Dark Radiation in Fibred LARGE Volume Compactifications

Stephen Angus

based on arXiv:1403:6473 (SA)

SUSY 2014 University of Manchester

Stephen Angus ()

Dark Radiation in fibred LVS

22/07/2014 1 / 18

nan

Outline

Motivation

- Experimental hints
- Theoretical perspective
- 2 Dark radiation in the LARGE Volume Scenario
 - The minimal model: one axion
 - Fibred scenario: two axions

Dark Radiation in Fibred LVS models

- The decay modes
- Predictions for $\Delta N_{\rm eff}$

Why dark radiation?

- Dark radiation: hidden relativistic matter that contributes to the energy density of the universe.
- At CMB temperatures,

$$\rho_{\rm radiation} = \rho_{\gamma} + \rho_{\nu} + \rho_{\rm hidden} \ .$$

• Conventionally parametrised in terms of the "excess effective number of neutrino species", $\Delta N_{\text{eff}} = N_{\text{eff}} - 3.046$:

$$\rho_{\text{radiation}} = \rho_{\gamma} \left(1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right)$$

NOTE: Not necessarily extra ν s; N_{eff} can be non-integer valued!

SOR

イロト イポト イヨト イヨト

Why dark radiation?

Experimental hints:

- Planck+WP+highL+BAO+ H_0 results: $N_{\text{eff}} = 3.52^{+0.48}_{-0.45}$, with $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$. (arXiv:1303.5076, Planck Collaboration)
- One BBN-only study: $N_{\text{eff}} = 3.50 \pm 0.20$ (arXiv:1308.3240).
- [BICEP2: r > 0. Having more DR can reduce tension with Planck. $N_{\text{eff}}^{(r=0.2)} = 4.00 \pm 0.41$ (Planck+WP+BICEP2) (arXiv:1403.4852).]

Can we trust these values?

- Results may favour a small DR contribution.
- Need to wait until the dust settles!

SOR

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Why dark radiation?

Disclaimer

In this talk: axion \equiv axion-like particle (ALP).

String theory perspective:

- Generically O(100) gravitationally-coupled moduli (scalars), each with associated axions (ALPs), many of which can be massless.
- After inflation, universe reheated by decays of the lightest moduli.
- Any non-zero branching ratio to light hidden states is a source of dark radiation!

General considerations:

- Simple and natural extension of ∧CDM if DM, why not DR?
- No a-priori reason why $N_{\text{eff}} = 3.046$ (eg. not symmetry-protected).

Harder to argue why dark radiation should not exist!

(Conversely, if $N_{\text{eff}} = 3.046$, string theory models must explain $\underline{w}_{\text{hy}}$)

Reheating

What happens after inflation?

- Any gravitationally-coupled scalar particles (eg. moduli in string theory) have generically acquired large non-zero VEVs.
- Begin to oscillate coherently about their final vacuum.
- Redshift as matter, $\rho_{\rm M} \sim a^{-3}$; any radiation redshifts as $\rho_{\rm R} \sim a^{-4}$.
- Moduli come to dominate the energy density of the universe; reheating is driven by the last modulus to decay.

$$\Gamma \sim rac{m_{\Phi}^3}{M_{P}^2}$$

Take-home message: the *lightest* modulus is *last* to decay.

Cosmic Axion Background

• Decay to axions can occur via an interaction Lagrangian

$$\mathcal{L} \supset rac{2}{\sqrt{6}M_{P}} \Phi \partial_{\mu} rac{a}{\partial} \partial^{\mu} rac{a}{\partial}.$$

• This produces pairs of axions, each with energies $E_a = m_{\Phi}/2$.

- These axions are highly relativistic and stream freely.
- Present day: would form a Cosmic Axion Background 1305.3603 (Conlon, Marsh).
- Can test CAB hypothesis via:
 - CMB, N_{eff} (that's us!);
 - axion-photon conversion in galaxy cluster B-fields (see talk by M.Rummel);
 - 3.5 keV line: DM $\rightarrow a \rightarrow \gamma$ in clusters/galaxies (other talk by M.Rummel).

LARGE Volume Scenario — overview

- Compactification of type IIB string theory where the Calabi-Yau volume V is stabilized to be exponentially large.
- Field content always includes:
 - the volume modulus, Φ , whose large VEV fixes the volume;
 - its axion partner, the volume axion *a*_b.
- Realise (MS)SM on D3 branes at a singularity ⇒ sequestering of soft masses:

$$M_{
m soft} \sim m_0 \sim m_{1/2} \sim rac{M_{
m P}}{\mathcal{V}^2}$$
 .

Some reasons to have a sequestered visible sector:

- makes $\Phi \rightarrow \text{visible}$ kinematically viable;
- avoids Cosmological Moduli Problem (light moduli spoil BBN) for TeV-scale soft terms $\Rightarrow m_{\Phi} \sim 5 \times 10^6 \text{ GeV}.$

Alternatively: D7s on fibre cycle (Hebecker et al, arXiv:1403.6810).

10 A

LARGE Volume Scenario — mass hierarchy

Interaction Lagrangian:

- Note that the volume axion *a_b* is effectively massless
 - \Rightarrow candidate for dark radiation.
- The leading decay modes of Φ are:
 - $\Phi \rightarrow \underline{a_b a_b}$ (hidden);
 - $\Phi \rightarrow H_u H_d$ (visible).
- Other hidden sector channels possible (won't discuss here).
- Shift symmetry in Higgs sector $\Rightarrow Z = 1$ at the string scale.

< 同 > < 三 > < 三 >

$$\mathcal{L} \supset rac{2}{\sqrt{6}M_{\mathsf{P}}} \left(\partial_{\mu} rac{a_{b}}{a_{b}}
ight)^{2} \Phi + rac{1}{\sqrt{6}M_{\mathsf{P}}} \left[rac{ZH_{\mathsf{U}}H_{\mathsf{d}}}{\nabla} \Phi + \mathsf{h.c.}
ight].$$

Results for the one-axion model

- Minimal LVS: MSSM spectrum; Giudice-Masiero coupling Z = 1.
- Tree-level result: ΔN_{eff} ~ 1.7, in conflict with observation arXiv:1208.3562 (Cicoli, Conlon, Quevedo), 1208.3563 (Higaki, Takahashi).
- Include loop corrections ⇒ lower bound of

 $\Delta \textit{N}_{eff} \gtrsim$ 1.4 ,

which is not much better than the tree-level result! arXiv:1305.4128 (SA, Conlon, Haisch, Powell)

• Exhibits the "moduli-induced axion problem": too much DR arXiv:1304.7987 (Higaki, Nakayama, Takahashi).

SOR

Fibred scenario: two axions

- The minimal scenario appears to be ruled out!
- Need to look for alternative scenarios...
- Simple extension: fibred LVS compactifications (e.g. K3 or T⁴ fibrations over a ℙ¹ base).
- Now two bulk moduli, each with associated axions.
- Visible sector on D3 branes at a singularity \Rightarrow sequestering.
- Bulk volume takes the form $V \simeq \sqrt{\tau_1} \tau_2$.

• τ_3 : small local cycle wrapped by ED3s; gives LARGE volume \mathcal{V} .

Fibred LVS — mass hierarchy

- One linear combination of moduli corresponds to the large bulk volume $\mathcal{V} \simeq \sqrt{\tau_1} \tau_2$.
- Flat transverse direction Ω, lifted by string loop corrections (from D7 branes on τ₁ and τ₂)
 ⇒ transverse combination Φ_Ω is now the lightest modulus!
- Predictions of this scenario different from minimal LVS.

• Assume
$$\tau_1/\tau_2 \sim 10^{\pm \text{ only a few}}$$

 \Rightarrow ensures $m_{\Phi_V} \gg m_{\Phi_Q}$.

< 同 ト < 三 ト < 三 ト

SOR

Decay to axions

• Kähler potential for bulk moduli & axions ($T_i \equiv \tau_i + ia_i$):

$$K = -2 \ln \mathcal{V} \sim -\ln(T_1 + \bar{T}_1) - 2 \ln(T_2 + \bar{T}_2).$$

• Normalise $\Phi_1 = \frac{1}{\sqrt{2}} \ln \tau_1$, $\Phi_2 = \ln \tau_2$; rotate to mass eigenbasis (Burgess *et al*, arXiv:1005.4840) $\Phi_{\mathcal{V}} \equiv \sqrt{\frac{2}{3}} \Phi_2 + \sqrt{\frac{1}{3}} \Phi_1$, $\Phi_{\Omega} \equiv \sqrt{\frac{1}{3}} \Phi_2 - \sqrt{\frac{2}{3}} \Phi_1$.

• Kinetic terms give interaction Lagrangian

$$\mathcal{L}_{\Phi_{\Omega} \to aa} = \frac{1}{\sqrt{3}M_{P}} \Phi_{\Omega} \left(2\partial_{\mu}a_{1}\partial^{\mu}a_{1} - \partial_{\mu}a_{2}\partial^{\mu}a_{2} \right) + \frac{1}{\sqrt{3}M_{P}} \Phi_{\Omega} \left(2\partial_{\mu}a_{1}\partial^{\mu}a_{2} - \partial_{\mu}a_{2}\partial^{\mu}a_{2} \right) + \frac{1}{\sqrt{3}M_{P}} \Phi_{\Omega} \left(2\partial_{\mu}a_{2}\partial^{\mu}a_{2} - \partial_{\mu}a_{2}\partial^{\mu}a_{2} \right) +$$

Resulting decay rate to axions:

$$\bar{}_{\Phi_\Omega \to aa} = rac{5}{96\pi} rac{M_{\Phi_\Omega}^3}{M_P^2} \, .$$

Decays to visible matter

• Decay to Higgs bosons: Kähler potential for vector-like matter is

$$\mathcal{K} = -2 \ln \mathcal{V} + \left\{ \frac{H_{u}\bar{H}_{u} + H_{d}\bar{H}_{d} + (ZH_{u}H_{d} + h.c.)}{(T_{1} + \bar{T}_{1})^{1/3}(T_{2} + \bar{T}_{2})^{2/3}} \right\}$$

• Relevant terms in the Lagrangian are

$$\begin{split} \mathcal{L} \supset &- \frac{1}{\sqrt{6}M_{P}} \Phi_{\mathcal{V}} \Big[H_{u} \Box \bar{H}_{u} + H_{d} \Box \bar{H}_{d} + \mathrm{h.c.} \Big] \\ &- \frac{1}{\sqrt{6}M_{P}} \Big[Z H_{u} H_{d} \Box \Phi_{\mathcal{V}} + \mathrm{h.c.} \Big] \,. \end{split}$$

- 1st line: present for all matter scalars.
- 2nd line: present for only vector-like matter.
- No longer any tree-level coupling to Φ_{Ω} !

SOR

ヨトイ

Decays to visible matter

Other visible sector decays:

- matter scalars similarly no tree-level coupling to Φ_0 ;
- fermions interactions chirality-suppressed, decays at loop level;
- gauge bosons axions in the bulk, SM localised \Rightarrow coupling \mathcal{V} -suppressed, also appears at loop level;
- other vector-like states same story as for the Higgs bosons.

Conclusion:

NO tree-level decays of lightest modulus Φ_0 to visible matter!

SOR

・ 同 ト ・ ヨ ト ・ ヨ ト

Consequences for $\Delta N_{\rm eff}$

Amount of dark radiation fixed by the ratio of branching ratios,

$$\kappa \equiv \frac{\operatorname{Br}(\operatorname{hidden})}{\operatorname{Br}(\operatorname{visible})} = \frac{\operatorname{Br}(\Phi_{\Omega} \to aa)}{\operatorname{Br}(\Phi_{\Omega} \to \operatorname{visible})}.$$

• Estimate decay rate to visible sector:

$$\Gamma_{1-\text{loop}} \sim \left(rac{lpha_{ ext{SM}}}{4\pi}
ight)^2 rac{m_{\Phi_\Omega}^3}{M_P^2} \,,$$
Br(hidden) 5π 1

$$\kappa \equiv {{\rm Br(hidden)}\over {\rm Br(visible)}} \sim {{5\pi}\over 6} {1\over {\alpha_{\rm SM}^2}} \sim 10^2 \, .$$

Result:

 $\Delta N_{\rm eff} \gtrsim 3\kappa$, so $\Delta N_{\rm eff} \gtrsim 300 \Rightarrow$ completely excluded!

▲ 伊 ▶ ▲ 三 ▶ ▲

Alternative scenario

Alternatively:

- Visible sector on D7s wrapping the fibre cycle τ₁ arXiv:1403.6810 (Hebecker, Mangat, Rompineve, Witkowski).
- Gauge kinetic function f_{vis} = T₁ + hS, Re(f) ~ 1/g²_{SM}, for g_{SM} ~ O(1) consider limit where τ₂ ≫ τ₁ ("anisotropic limit").
- Decay to Higgs restored; also decay to gauge bosons,

$$\Gamma = rac{N_g}{48\pi}\,\gamma^2\,rac{m_{\Phi_\Omega}^3}{M_{\mathsf{P}}^2}\,\,,\quad \gamma = rac{ au_1}{ au_1+h{ ext{Re}}(S)}\,.$$

• With Z = 1 and $\gamma = 1$ find a dark radiation abundance

 $\Delta \textit{N}_{eff} \simeq 0.6$.

• Natural parameter values allowed by data!

SOR

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

- Dark radiation is a well-motivated addition to ACDM.
- The LARGE Volume Scenario in IIB String Theory is a good framework for building and testing models of the early universe.
- Constraints on N_{eff} provide a powerful test of such models.
- Minimal LVS is in tension with Planck data, so need to look at more complicated scenarios; fibred models gualitatively different.
- In the fibred sequestered scenario, $\Delta N_{\rm eff} \gtrsim 300$ (c.f. $\Delta N_{\rm eff} \simeq 0.5$) \Rightarrow fibred sequestered models ruled out.
- D7s on the fibre cycle $\Rightarrow \Delta N_{\text{eff}} \simeq 0.6$, consistent with data.

However...

- If BICEP2 were to be confirmed, $\Delta N_{\rm eff} \simeq 1.0 \pm 0.4$ at 68% c.l. \Rightarrow consistent with minimal LVS, where $\Delta N_{\rm eff} \gtrsim 1.4$.
- Watch this parameter space!

SOR

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト