Renormalization group flows and the Weyl consistency conditions

Esben Mølgaard

<u>CP³Origins</u>

The Centre for Cosmology and Particle Physics Phenomenology Danish Institute for Advanced Study University of Southern Denmark

Antipin, Gillioz, Krog, EM & Sannino (2013) arXiv:1306.3234 EM & Schrock (2014) arXiv:1403.3058

SUSY 14 University of Manchester

Esben Mølgaard (CP³ Origins) RG flows and Weyl consistency conditions

• g_s, the coupling constant in QCD, is the interaction strength between a gluon and a quark.

- g_s, the coupling constant in QCD, is the interaction strength between a gluon and a quark.
- · Feynman tells us we must also consider loop corrections

- g_s, the coupling constant in QCD, is the interaction strength between a gluon and a quark.
- · Feynman tells us we must also consider loop corrections

• Each diagram is evaluated at a renormalization energy scale μ .

- g_s, the coupling constant in QCD, is the interaction strength between a gluon and a quark.
- · Feynman tells us we must also consider loop corrections

$$) = +) = \cdots$$
 (1)

- Each diagram is evaluated at a renormalization energy scale μ .
- The dependence on μ is given by the beta function $\beta_g = \mu \frac{dg}{d\mu}$

• Infrared free

- Infrared free
- $g \rightarrow 0$ at low energy

- Infrared free
- $g \rightarrow 0$ at low energy
- Similar to QED

- Infrared free
- $g \rightarrow 0$ at low energy
- Similar to QED

• Asymptotically free

- Infrared free
- $g \rightarrow 0$ at low energy
- Similar to QED

- Asymptotically free
- $g \rightarrow 0$ at high energy

- Infrared free
- $g \rightarrow 0$ at low energy
- Similar to QED

- Asymptotically free
- $g \rightarrow 0$ at high energy
- Realized in QCD

Dietrich & Sannino (2007), arXiv:hep-ph/0611341

Dietrich & Sannino (2007), arXiv:hep-ph/0611341

- Infrared free
- Conformal
- Near-conformal
- Asymptotically free

Dietrich & Sannino (2007), arXiv:hep-ph/0611341

- Infrared free
- Conformal
- Near-conformal
- Asymptotically free

It all depends on the features of the beta functions!

Dietrich & Sannino (2007), arXiv:hep-ph/0611341

- Infrared free
- Conformal
- Near-conformal
- Asymptotically free

It all depends on the features of the beta functions!

(And non-perturbative effects.)

Theories with multiple couplings

• We consider a general gauge-Yukawa theory.

Theories with multiple couplings

• We consider a general gauge-Yukawa theory.

$$\mathcal{L} = \mathcal{L}_{kin} - \frac{1}{2} \left(y_{JK;A} \Psi^J \Psi^K \Phi^A + h.c. \right) - \frac{1}{4!} \lambda_{ABCD} \Phi^A \Phi^B \Phi^C \Phi^D$$
(2)

Theories with multiple couplings

• We consider a general gauge-Yukawa theory.

$$\mathcal{L} = \mathcal{L}_{kin} - \frac{1}{2} \left(y_{JK;A} \Psi^J \Psi^K \Phi^A + h.c. \right) - \frac{1}{4!} \lambda_{ABCD} \Phi^A \Phi^B \Phi^C \Phi^D$$
(2)

and have

$$\mu \frac{\mathrm{d}g}{\mathrm{d}\mu} = \beta_g(g, y_{JK;E}, \lambda_{ABCD}) \tag{3}$$

$$\mu \frac{\mathrm{d} y_{JK;E}}{\mathrm{d} \mu} = \beta_{y_{JK;E}}(g, y_{J'K';E'}, \lambda_{ABCD}) \tag{4}$$

$$\mu \frac{\mathrm{d}\lambda_{ABCD}}{\mathrm{d}\mu} = \beta_{\lambda_{ABCD}}(g, y_{JK;E}, \lambda_{A'B'C'D'})$$
(5)

$$\mathcal{L} = \bar{\psi}_L i \partial \!\!\!/ \psi_L + \bar{\chi}_R i \partial \!\!\!/ \chi_R - [y \bar{\psi}_L \chi_R \phi + h.c.] + \partial_\mu \phi^\dagger \partial^\mu \phi - \mu_\phi^2 \phi^\dagger \phi - \lambda (\phi^\dagger \phi)^2$$
(6)

$$\mathcal{L} = \bar{\psi}_L i \partial \!\!\!/ \psi_L + \bar{\chi}_R i \partial \!\!\!/ \chi_R - [y \bar{\psi}_L \chi_R \phi + h.c.] + \partial_\mu \phi^\dagger \partial^\mu \phi - \mu_\phi^2 \phi^\dagger \phi - \lambda (\phi^\dagger \phi)^2$$
(6)

• Global $SU(N_c) \otimes SU(N_f) \otimes U(1)$ symmetry.

$$\mathcal{L} = \bar{\psi}_L i \partial \!\!\!/ \psi_L + \bar{\chi}_R i \partial \!\!\!/ \chi_R - [y \bar{\psi}_L \chi_R \phi + h.c.] + \partial_\mu \phi^\dagger \partial^\mu \phi - \mu_\phi^2 \phi^\dagger \phi - \lambda (\phi^\dagger \phi)^2$$
(6)

- Global $SU(N_c) \otimes SU(N_f) \otimes U(1)$ symmetry.
- $\psi_L = \psi^a_{L;j}$, $\chi_R = \chi_{R;j}$, $\phi = \phi^a$, with $a = 1 \dots N_c$ and $j = 1 \dots N_f$

$$\mathcal{L} = \bar{\psi}_L i \partial \!\!\!/ \psi_L + \bar{\chi}_R i \partial \!\!\!/ \chi_R - [y \bar{\psi}_L \chi_R \phi + h.c.] + \partial_\mu \phi^\dagger \partial^\mu \phi - \mu_\phi^2 \phi^\dagger \phi - \lambda (\phi^\dagger \phi)^2$$
(6)

- Global $SU(N_c) \otimes SU(N_f) \otimes U(1)$ symmetry.
- $\psi_L = \psi^a_{L;j}$, $\chi_R = \chi_{R;j}$, $\phi = \phi^a$, with $a = 1 \dots N_c$ and $j = 1 \dots N_f$
- and we assume $\mu_\phi \ll \mu$

• $N_c \to \infty$ and $N_f \to \infty$ with $r = \frac{N_f}{N_c}$ constant.

- $N_c \to \infty$ and $N_f \to \infty$ with $r = \frac{N_f}{N_c}$ constant.
- We rescale the couplings

$$\bar{a}_y \equiv \frac{y^2 N_c}{(4\pi)^2}$$
 $\bar{a}_\lambda \equiv \frac{\lambda N_c}{(4\pi)^2}$ (7)

- $N_c \to \infty$ and $N_f \to \infty$ with $r = \frac{N_f}{N_c}$ constant.
- We rescale the couplings

$$\bar{a}_{y} \equiv \frac{y^{2} N_{c}}{(4\pi)^{2}} \qquad \qquad \bar{a}_{\lambda} \equiv \frac{\lambda N_{c}}{(4\pi)^{2}} . \tag{7}$$

• And compute the beta functions to 2 loops in perturbation theory.

$$\beta_{\bar{a}_y}^{(1)} = (1+2r)\bar{a}_y^2 \tag{8}$$

$$\beta_{\bar{a}_{y}}^{(2)} = -3r\bar{a}_{y}^{3} \tag{9}$$

$$\beta_{\bar{a}_{\lambda}}^{(1)} = 2(2\bar{a}_{\lambda}^2 + 2r\bar{a}_y\bar{a}_{\lambda} - r\bar{a}_y^2)$$
(10)

$$\beta_{\bar{a}_{\lambda}}^{(2)} = r\bar{a}_{y}(-8\bar{a}_{\lambda}^{2} - 3\bar{a}_{y}\bar{a}_{\lambda} + 2\bar{a}_{y}^{2}) .$$
⁽¹¹⁾

$$\beta_{\bar{a}_y}^{(1)} = (1+2r)\bar{a}_y^2 \tag{8}$$

$$\beta_{\bar{a}_{y}}^{(2)} = -3r\bar{a}_{y}^{3} \tag{9}$$

$$\beta_{\bar{a}_{\lambda}}^{(1)} = 2(2\bar{a}_{\lambda}^{2} + 2r\bar{a}_{y}\bar{a}_{\lambda} - r\bar{a}_{y}^{2})$$
(10)

$$\beta_{\bar{a}_{\lambda}}^{(2)} = r\bar{a}_{y}(-8\bar{a}_{\lambda}^{2} - 3\bar{a}_{y}\bar{a}_{\lambda} + 2\bar{a}_{y}^{2}) .$$
⁽¹¹⁾

•
$$\beta_{\bar{a}_y} = \beta_{\bar{a}_y}(\bar{a}_y).$$

$$\beta_{\bar{a}_y}^{(1)} = (1+2r)\bar{a}_y^2 \tag{8}$$

$$\beta_{\bar{a}_{y}}^{(2)} = -3r\bar{a}_{y}^{3} \tag{9}$$

$$\beta_{\bar{a}_{\lambda}}^{(1)} = 2(2\bar{a}_{\lambda}^{2} + 2r\bar{a}_{y}\bar{a}_{\lambda} - r\bar{a}_{y}^{2})$$
(10)

$$\beta_{\bar{a}_{\lambda}}^{(2)} = r\bar{a}_{y}(-8\bar{a}_{\lambda}^{2} - 3\bar{a}_{y}\bar{a}_{\lambda} + 2\bar{a}_{y}^{2}) .$$
⁽¹¹⁾

$$\beta_{\bar{a}_y}^{(1)} = (1+2r)\bar{a}_y^2 \tag{8}$$

$$\beta_{\bar{a}_{y}}^{(2)} = -3r\bar{a}_{y}^{3} \tag{9}$$

$$\beta_{\bar{a}_{\lambda}}^{(1)} = 2(2\bar{a}_{\lambda}^{2} + 2r\bar{a}_{y}\bar{a}_{\lambda} - r\bar{a}_{y}^{2})$$
(10)

$$\beta_{\bar{a}_{\lambda}}^{(2)} = r\bar{a}_{y}(-8\bar{a}_{\lambda}^{2} - 3\bar{a}_{y}\bar{a}_{\lambda} + 2\bar{a}_{y}^{2}) .$$
⁽¹¹⁾

- $\beta_{\bar{a}_y} = \beta_{\bar{a}_y}(\bar{a}_y).$ • $\beta_{\bar{a}_y}^{(1)}$ and $\beta_{\bar{a}_y}^{(2)}$ have opposite sign.
- $\beta^{(1)}_{\bar{a}_{\lambda}}$ and $\beta^{(2)}_{\bar{a}_{\lambda}}$ each have terms of either sign.

$$\beta_{\bar{a}_y}^{(1)} = (1+2r)\bar{a}_y^2 \tag{8}$$

$$\beta_{\bar{a}_{y}}^{(2)} = -3r\bar{a}_{y}^{3} \tag{9}$$

$$\beta_{\bar{a}_{\lambda}}^{(1)} = 2(2\bar{a}_{\lambda}^2 + 2r\bar{a}_y\bar{a}_{\lambda} - r\bar{a}_y^2)$$
(10)

$$\beta_{\bar{a}_{\lambda}}^{(2)} = r\bar{a}_{y}(-8\bar{a}_{\lambda}^{2} - 3\bar{a}_{y}\bar{a}_{\lambda} + 2\bar{a}_{y}^{2}) .$$
⁽¹¹⁾

- β_{āy} = β_{āy}(āy).
 β⁽¹⁾_{āy} and β⁽²⁾_{āy} have opposite sign.
 β⁽¹⁾_{āλ} and β⁽²⁾_{āλ} each have terms of either sign.
- $\beta_{\bar{a}_{\lambda}} = f_2(\bar{a}_y)\bar{a}_{\lambda}^2 + f_1(\bar{a}_y)\bar{a}_{\lambda} + f_0(\bar{a}_y)$

$$\beta_{\bar{a}_y}^{(1)} = (1+2r)\bar{a}_y^2 \tag{8}$$

$$\beta_{\bar{a}_{y}}^{(2)} = -3r\bar{a}_{y}^{3} \tag{9}$$

$$\beta_{\bar{a}_{\lambda}}^{(1)} = 2(2\bar{a}_{\lambda}^{2} + 2r\bar{a}_{y}\bar{a}_{\lambda} - r\bar{a}_{y}^{2})$$
(10)

$$\beta_{\bar{a}_{\lambda}}^{(2)} = r\bar{a}_{y}(-8\bar{a}_{\lambda}^{2} - 3\bar{a}_{y}\bar{a}_{\lambda} + 2\bar{a}_{y}^{2}) .$$
⁽¹¹⁾

Fixed points

• *n* loop Yukawa beta function, and *k* loop quartic beta function.

Fixed points

• *n* loop Yukawa beta function, and *k* loop quartic beta function.

• Solve $\beta_{\bar{a}_y,n\ell} = \beta_{\bar{a}_\lambda,k\ell} = 0$

Fixed points

- *n* loop Yukawa beta function, and *k* loop quartic beta function.
- Solve $\beta_{\bar{a}_y,n\ell} = \beta_{\bar{a}_\lambda,k\ell} = 0$
- Non-trivial solutions only for n = 2.

Flow comparison, r = 1.1, low \bar{a}

Esben Mølgaard (CP³ Origins)

RG flows and Weyl consistency conditions

Flow comparison, r = 1.1, high \bar{a}

Esben Mølgaard (CP³ Origins)

RG flows and Weyl consistency conditions

Limits of perturbation theory

• When $\bar{a} = \mathcal{O}(1)$, each term in the loop expansion is comparable.

Limits of perturbation theory

- When $\bar{a} = \mathcal{O}(1)$, each term in the loop expansion is comparable.
- Each order should only make "small" corrections.

- When $\bar{a} = \mathcal{O}(1)$, each term in the loop expansion is comparable.
- Each order should only make "small" corrections.
- Non-perturbative phenomena condensation and bound states.

- When $\bar{a} = \mathcal{O}(1)$, each term in the loop expansion is comparable.
- Each order should only make "small" corrections.
- Non-perturbative phenomena condensation and bound states.
- Unclear how to choose *n* and *k*.

 $\frac{\partial^2 \tilde{\mathbf{a}}}{\partial g_i \partial g_j} \approx \frac{\partial \chi^{jk} \beta_k}{\partial g_i} \approx \frac{\partial \chi^{ik} \beta_k}{\partial g_i}$

$$\frac{\partial^2 \tilde{\mathbf{a}}}{\partial g_i \partial g_j} \approx \frac{\partial \chi^{jk} \beta_k}{\partial g_i} \approx \frac{\partial \chi^{ik} \beta_k}{\partial g_j}$$

The leading terms in χ^{ii} are of order

• $\mathcal{O}(a_g^{-2})$ for gauge couplings

$$\frac{\partial^2 \tilde{\mathbf{a}}}{\partial g_i \partial g_j} \approx \frac{\partial \chi^{jk} \beta_k}{\partial g_i} \approx \frac{\partial \chi^{ik} \beta_k}{\partial g_j}$$

The leading terms in χ^{ii} are of order

- $\mathcal{O}(a_g^{-2})$ for gauge couplings
- $\mathcal{O}(a_y^{-1})$ for Yukawa couplings

$$\frac{\partial^2 \tilde{\mathbf{a}}}{\partial g_i \partial g_j} \approx \frac{\partial \chi^{jk} \beta_k}{\partial g_i} \approx \frac{\partial \chi^{ik} \beta_k}{\partial g_j}$$

The leading terms in χ^{ii} are of order

- $\mathcal{O}(a_g^{-2})$ for gauge couplings
- $\mathcal{O}(a_v^{-1})$ for Yukawa couplings
- $\mathcal{O}(1)$ for quartic couplings

$$\frac{\partial^2 \tilde{\mathbf{a}}}{\partial g_i \partial g_j} \approx \frac{\partial \chi^{jk} \beta_k}{\partial g_i} \approx \frac{\partial \chi^{ik} \beta_k}{\partial g_j}$$

(12)

The leading terms in χ^{ii} are of order

- $\mathcal{O}(a_g^{-2})$ for gauge couplings
- $\mathcal{O}(a_v^{-1})$ for Yukawa couplings
- $\mathcal{O}(1)$ for quartic couplings

Thus, to preserve Weyl symmetry in a gauge-Yukawa theory, we must use

- the gauge beta function to n + 2 loops,
- the Yukawa beta function to n + 1 loops,
- the quartic beta function to *n* loops.

$$\beta_{a_g} = a_g^2 (b_1(a_g) + b_2(a_g, a_y) + b_3(a_g, a_y, a_\lambda))$$
(13)

$$\beta_{a_g} = a_g^2 (b_1(a_g) + b_2(a_g, a_y) + b_3(a_g, a_y, a_\lambda))$$
(13)
$$\beta_{a_g} = a_y (c_1(a_g, a_y) + c_2(a_g, a_y, a_\lambda))$$
(14)

$$\beta_{a_g} = a_y \big(c_1(a_g, a_y) + c_2(a_g, a_y, a_\lambda) \big) \tag{14}$$

14 / 18

$$\beta_{a_g} = a_g^2 (b_1(a_g) + b_2(a_g, a_y) + b_3(a_g, a_y, a_\lambda))$$
(13)

$$\beta_{a_g} = a_y \big(c_1(a_g, a_y) + c_2(a_g, a_y, a_\lambda) \big) \tag{14}$$

$$\beta_{a_{\lambda}} = d_1(a_g, a_y, a_{\lambda}) \tag{15}$$

$$\beta_{a_g} = a_g^2 \left(b_1(a_g) + b_2(a_g, a_y) + b_3(a_g, a_y, a_\lambda) \right)$$
(13)

$$\beta_{a_g} = a_y \big(c_1(a_g, a_y) + c_2(a_g, a_y, a_\lambda) \big) \tag{14}$$

$$\beta_{a_{\lambda}} = d_1(a_g, a_y, a_{\lambda}) \tag{15}$$

14 / 18

Which is automatically in line with the Weyl consistency conditions!

• Renormalization group flows in multi-coupling theories are have a rich structure.

- Renormalization group flows in multi-coupling theories are have a rich structure.
- A new principle is needed for perturbation theory to be trustable.

- Renormalization group flows in multi-coupling theories are have a rich structure.
- A new principle is needed for perturbation theory to be trustable.
- The Weyl consistency conditions are required by conformal symmetry and provide such a principle.

- Renormalization group flows in multi-coupling theories are have a rich structure.
- A new principle is needed for perturbation theory to be trustable.
- The Weyl consistency conditions are required by conformal symmetry and provide such a principle.
- To satisfy them, we must adopt the 321 counting scheme at the lowest order in the beta functions.

Perturbative toy model

Antipin, Mojaza & Sannino (2011) arXiv:1107.2932

$$\mathcal{L} = \mathcal{L}_{\mathcal{K}}(G_{\mu}, \lambda_{m}, Q, \tilde{Q}, H) + \left(y_{H}QH\tilde{Q} + h.c\right) - u_{1}\left(\operatorname{Tr}\left[HH^{\dagger}\right]\right)^{2} - u_{2}\operatorname{Tr}\left[(HH^{\dagger})^{2}\right], \quad (16)$$

Fields	$[SU(N_{TC})]$	$SU(N_f)_L$	$SU(N_f)_R$	$U(1)_V$	$U(1)_{AF}$
λ_m	Adj	1	1	0	1
Q			1	$\frac{N_f - N_{TC}}{N_{TC}}$	$-\frac{N_{TC}}{N_{f}}$
\tilde{Q}		1		$-\frac{N_f - N_{TC}}{N_{TC}}$	$-\frac{\dot{N}_{TC}}{N_f}$
Н	1			0	$\frac{2N_{TC}}{N_{f}}$
G_{μ}	Adj	1	1	0	0

Table: The field content of the toy model and the related symmetries

Antipin, Di Chiara, Mojaza, EM & Sannino (2012) arXiv:1205.6157 Antipin, Gillioz, EM & Sannino (2013) arXiv:1303.1525

We investigate this model in the Veneziano limit of large N_{TC} and large N_f , with $x = \frac{N_f}{N_{TC}}$ fixed and rescaled couplings

$$a_g = \frac{g^2 N_{TC}}{(4\pi)^2}, \quad a_H = \frac{y_H^2 N_{TC}}{(4\pi)^2}, \quad z_1 = \frac{u_1 N_f^2}{(4\pi)^2}, \quad z_2 = \frac{u_2 N_f}{(4\pi)^2}.$$
 (17)

Antipin, Di Chiara, Mojaza, EM & Sannino (2012) arXiv:1205.6157 Antipin, Gillioz, EM & Sannino (2013) arXiv:1303.1525

We investigate this model in the Veneziano limit of large N_{TC} and large N_f , with $x = \frac{N_f}{N_{TC}}$ fixed and rescaled couplings

$$a_g = \frac{g^2 N_{TC}}{(4\pi)^2}, \quad a_H = \frac{y_H^2 N_{TC}}{(4\pi)^2}, \quad z_1 = \frac{u_1 N_f^2}{(4\pi)^2}, \quad z_2 = \frac{u_2 N_f}{(4\pi)^2}.$$
 (17)

To illuminate the importance of the beta function counting scheme, we here reproduce the analysis done in three different ones

211 to 2 loops in a_g , 1 loop in a_H and 1 loop in z_2 . 222 to 2 loops in a_g , 2 loops in a_H and 2 loops in z_2 . 321 to 3 loops in a_g , 2 loops in a_H and 1 loop in z_2 .

We trust perturbation theory if the changes order by order are "small"

Fixed point values for a_g (blue), a_H (red) and z_2 (yellow)

We trust perturbation theory if the changes order by order are "small"

Fixed point values for a_g (blue), a_H (red) and z_2 (yellow)

We trust perturbation theory if the changes order by order are "small"

Fixed point values for a_g (blue), a_H (red) and z_2 (yellow)

The 321 scheme does not introduce new spurious fixed points, and keeps the values from diverging.