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Running coupling constants

• gs , the coupling constant in QCD, is the interaction strength between
a gluon and a quark.

• Feynman tells us we must also consider loop corrections

�

+�+�+�+ · · ·

(1)

• Each diagram is evaluated at a renormalization energy scale µ.

• The dependence on µ is given by the beta function βg = µdg
dµ
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Running to or from

logHΜL

g

• Infrared free

• g → 0 at low energy

• Similar to QED

logHΜL

g

• Asymptotically free

• g → 0 at high energy

• Realized in QCD

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 3 / 18



Running to or from

logHΜL

g

• Infrared free

• g → 0 at low energy

• Similar to QED

logHΜL

g

• Asymptotically free

• g → 0 at high energy

• Realized in QCD

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 3 / 18



Running to or from

logHΜL

g

• Infrared free

• g → 0 at low energy

• Similar to QED

logHΜL

g

• Asymptotically free

• g → 0 at high energy

• Realized in QCD

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 3 / 18



Running to or from

logHΜL

g

• Infrared free

• g → 0 at low energy

• Similar to QED

logHΜL

g

• Asymptotically free

• g → 0 at high energy

• Realized in QCD

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 3 / 18



Running to or from

logHΜL

g

• Infrared free

• g → 0 at low energy

• Similar to QED

logHΜL

g

• Asymptotically free

• g → 0 at high energy

• Realized in QCD

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 3 / 18



Running to or from

logHΜL

g

• Infrared free

• g → 0 at low energy

• Similar to QED

logHΜL

g

• Asymptotically free

• g → 0 at high energy

• Realized in QCD

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 3 / 18



Phase diagram of quantum field theories

Dietrich & Sannino (2007),

arXiv:hep-ph/0611341

• Infrared free

• Conformal

• Near-conformal

• Asymptotically free

It all depends on the features of the
beta functions!
(And non-perturbative effects.)
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Theories with multiple couplings

• We consider a general gauge-Yukawa theory.

L = Lkin −
1

2

(
yJK ;AΨJΨKΦA + h.c.

)
− 1

4!
λABCDΦAΦBΦCΦD (2)

and have

µ
dg

dµ
= βg (g , yJK ;E , λABCD) (3)

µ
dyJK ;E

dµ
= βyJK ;E

(g , yJ′K ′;E ′ , λABCD) (4)

µ
dλABCD

dµ
= βλABCD (g , yJK ;E , λA′B′C ′D′) (5)
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Sufficiently advanced science

• We consider a simple model

L = ψ̄Li/∂ψL + χ̄R i/∂χR − [y ψ̄LχRφ+ h.c .]

+ ∂µφ
† ∂µφ− µ2

φφ
†φ− λ(φ†φ)2

(6)

• Global SU(Nc)⊗ SU(Nf )⊗ U(1) symmetry.

• ψL = ψa
L;j , χR = χR;j , φ = φa, with a = 1 . . .Nc and j = 1 . . .Nf

• and we assume µφ � µ

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 6 / 18



Sufficiently advanced science

• We consider a simple model

L = ψ̄Li/∂ψL + χ̄R i/∂χR − [y ψ̄LχRφ+ h.c .]

+ ∂µφ
† ∂µφ− µ2

φφ
†φ− λ(φ†φ)2

(6)

• Global SU(Nc)⊗ SU(Nf )⊗ U(1) symmetry.

• ψL = ψa
L;j , χR = χR;j , φ = φa, with a = 1 . . .Nc and j = 1 . . .Nf

• and we assume µφ � µ

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 6 / 18



Sufficiently advanced science

• We consider a simple model

L = ψ̄Li/∂ψL + χ̄R i/∂χR − [y ψ̄LχRφ+ h.c .]

+ ∂µφ
† ∂µφ− µ2

φφ
†φ− λ(φ†φ)2

(6)

• Global SU(Nc)⊗ SU(Nf )⊗ U(1) symmetry.

• ψL = ψa
L;j , χR = χR;j , φ = φa, with a = 1 . . .Nc and j = 1 . . .Nf

• and we assume µφ � µ

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 6 / 18



Sufficiently advanced science

• We consider a simple model

L = ψ̄Li/∂ψL + χ̄R i/∂χR − [y ψ̄LχRφ+ h.c .]

+ ∂µφ
† ∂µφ− µ2

φφ
†φ− λ(φ†φ)2

(6)

• Global SU(Nc)⊗ SU(Nf )⊗ U(1) symmetry.

• ψL = ψa
L;j , χR = χR;j , φ = φa, with a = 1 . . .Nc and j = 1 . . .Nf

• and we assume µφ � µ

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 6 / 18



Sufficiently advanced science

• We consider a simple model

L = ψ̄Li/∂ψL + χ̄R i/∂χR − [y ψ̄LχRφ+ h.c .]

+ ∂µφ
† ∂µφ− µ2

φφ
†φ− λ(φ†φ)2

(6)

• Global SU(Nc)⊗ SU(Nf )⊗ U(1) symmetry.

• ψL = ψa
L;j , χR = χR;j , φ = φa, with a = 1 . . .Nc and j = 1 . . .Nf

• and we assume µφ � µ

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 6 / 18



Large N limit

• Nc →∞ and Nf →∞ with r = Nf
Nc

constant.

• We rescale the couplings

āy ≡
y2Nc

(4π)2
āλ ≡

λNc

(4π)2
. (7)

• And compute the beta functions to 2 loops in perturbation theory.
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Beta functions

β
(1)
āy = (1 + 2r)ā2

y (8)

β
(2)
āy = −3r ā3

y (9)

β
(1)
āλ

= 2(2ā2
λ + 2r āy āλ − r ā2

y ) (10)

β
(2)
āλ

= r āy (−8ā2
λ − 3āy āλ + 2ā2

y ) . (11)

• βāy = βāy (āy ).

• β(1)
āy and β

(2)
āy have opposite sign.

• β(1)
āλ

and β
(2)
āλ

each have terms of either sign.

• βāλ = f2(āy )ā2
λ + f1(āy )āλ + f0(āy )

• If āy = 0, then βāλ = 0⇔ āλ = 0.
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āλ

each have terms of either sign.
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y ) (10)

β
(2)
āλ
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• β(1)
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āy and β

(2)
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Fixed points

• n loop Yukawa beta function, and k loop quartic beta function.

• Solve βāy ,n` = βāλ,k` = 0
• Non-trivial solutions only for n = 2.

0.2 0.4 0.6 0.8 1.0 1.2
r

-1.5

-1.0

-0.5

0.5

1.0

1.5

a*
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Flow comparison, r = 1.1, low ā
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Flow comparison, r = 1.1, high ā
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Limits of perturbation theory

• When ā = O(1), each term in the loop expansion is comparable.

• Each order should only make “small” corrections.

• Non-perturbative phenomena – condensation and bound states.

• Unclear how to choose n and k .
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The Weyl consistency conditions

∂2ã

∂gi∂gj
≈ ∂χjkβk

∂gi
≈ ∂χikβk

∂gj
(12)

The leading terms in χii are of order

• O(a−2
g ) for gauge couplings

• O(a−1
y ) for Yukawa couplings

• O(1) for quartic couplings

Thus, to preserve Weyl symmetry in a gauge-Yukawa theory, we must use

• the gauge beta function to n + 2 loops,

• the Yukawa beta function to n + 1 loops,

• the quartic beta function to n loops.
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∂gi∂gj
≈ ∂χjkβk

∂gi
≈ ∂χikβk

∂gj
(12)

The leading terms in χii are of order

• O(a−2
g ) for gauge couplings

• O(a−1
y ) for Yukawa couplings

• O(1) for quartic couplings

Thus, to preserve Weyl symmetry in a gauge-Yukawa theory, we must use

• the gauge beta function to n + 2 loops,

• the Yukawa beta function to n + 1 loops,

• the quartic beta function to n loops.

Esben Mølgaard (CP3 Origins) RG flows and Weyl consistency conditions July 22, 2014 13 / 18



Generic beta functions

Generically, beta functions in a gauge-Yukawa theory have the form

βag = a2
g

(
b1(ag ) + b2(ag , ay ) + b3(ag , ay , aλ)

)
(13)

βag = ay
(
c1(ag , ay ) + c2(ag , ay , aλ)

)
(14)

βaλ = d1(ag , ay , aλ) (15)

Which is automatically in line with the Weyl consistency conditions!
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Conclusions

• Renormalization group flows in multi-coupling theories are have a rich
structure.

• A new principle is needed for perturbation theory to be trustable.

• The Weyl consistency conditions are required by conformal symmetry
and provide such a principle.

• To satisfy them, we must adopt the 321 counting scheme at the
lowest order in the beta functions.
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Perturbative toy model

L = LK (Gµ, λm,Q, Q̃,H) +
(
yHQHQ̃ + h.c

)
− u1

(
Tr [HH†]

)2
− u2Tr

[
(HH†)2

]
, (16)

Fields [SU(NTC )] SU(Nf )L SU(Nf )R U(1)V U(1)AF
λm Adj 1 1 0 1

Q � � 1 Nf−NTC
NTC

−NTC
Nf

Q̃ � 1 � −Nf−NTC
NTC

−NTC
Nf

H 1 � � 0 2NTC
Nf

Gµ Adj 1 1 0 0

Table: The field content of the toy model and the related symmetries
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Modified fixed points

We investigate this model in the Veneziano limit of large NTC and large
Nf , with x = Nf

NTC
fixed and rescaled couplings

ag =
g2NTC

(4π)2
, aH =

y2
HNTC

(4π)2
, z1 =

u1N
2
f

(4π)2
, z2 =

u2Nf

(4π)2
. (17)

To illuminate the importance of the beta function counting scheme, we
here reproduce the analysis done in three different ones

211 to 2 loops in ag , 1 loop in aH and 1 loop in z2.

222 to 2 loops in ag , 2 loops in aH and 2 loops in z2.

321 to 3 loops in ag , 2 loops in aH and 1 loop in z2.
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Modified fixed points

We trust perturbation theory if the changes order by order are “small”
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Fixed point values for ag (blue), aH (red) and z2 (yellow)

The 321 scheme does not introduce new spurious fixed points, and keeps
the values from diverging.
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