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A solution to the baryon-DM coincidence problem  
in the mSUGRA/CMSSM model  
with a 126 GeV Higgs boson
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Dark Matter : 26%

Baryon : 4.8%

 Antibaryon : 0%

Dark Energy : 69.2%

asymmetry

Content  
of the Universe

Planck (2013)

coincidence problem
Baryon and DM have  
a common origin?

Introduction: motivation

We have proposed a scenario for 
co-genesis of baryon and DM 
in the CMSSM
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Introduction: Affleck-Dine mechanism

The Affleck-Dine baryogenesis generates the baryon asymmetry 
using a flat direction (denoted by     )

Affleck, Dine, 85 
Dine, Randall, Thomas, 96
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the flat direction has a large VEV during inflation
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Introduction: Affleck-Dine mechanism

The Affleck-Dine baryogenesis generates the baryon asymmetry 
using a flat direction (denoted by     ) 
!
coherently oscillates (spatially homogeneous) 
!
In many cases, however, this coherent oscillation is unstable 
and fragments into non-topological solitons called Q-balls

Affleck, Dine, 85 
Dine, Randall, Thomas, 96
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Coleman, 85 
Kusenko, 97 

Kusenko, Shaposhnikov, 98
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two-dimensional simulation  
of Q-ball formation

baryon density

Introduction: Q-ball
Coleman, 85

The coherent oscillation is 
homogeneous just after 
starting oscillation

Small quantum fluctuations 
grow to form Q-balls
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Introduction: Q-ball
Coleman, 85

baryon density

two-dimensional simulation  
of Q-ball formation

The coherent oscillation is 
homogeneous just after 
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Small quantum fluctuations 
grow to form Q-balls
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Although Q-balls are very long-lived solitons,  
!
they gradually evaporate into 

quarks　    (    baryon) !
light SUSY particles  (    DM)

Coleman, 85 
Kusenko, 97 

Kusenko, Shaposhnikov, 98

Cohen, et. al., 86
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Although Q-balls are very long-lived solitons,  
!
they gradually evaporate into 

quarks　    (    baryon) !
light SUSY particles  (    DM)

naturally explains the observed 
baryon-to-DM ratio: 

Baryon and DM are generated from the common origin

Coleman, 85 
Kusenko, 97 

Kusenko, Shaposhnikov, 98

Cohen, et. al., 86

Enqvist, McDonald, 99

Fujii, Hamaguchi, 02 
Roszkowski, Seto, 07 

Shoemaker, Kusenko, 09 
Kasuya, Kawasaki, 11 

Doddato, McDonald, 13 
Kasuya, Kawasaki, M.Y., 13

⌦b/⌦DM = O(1)
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Although Q-balls are very long-lived solitons,  
!
they gradually evaporate into 

quarks　    (    baryon) !
light SUSY particles  (    DM)

Baryon and DM are generated from the common origin

We need to compute 
these branching ratios 

Coleman, 85 
Kusenko, 97 

Kusenko, Shaposhnikov, 98

Cohen, et. al., 86

Enqvist, McDonald, 99

Fujii, Hamaguchi, 02 
Roszkowski, Seto, 07 

Shoemaker, Kusenko, 09 
Kasuya, Kawasaki, 11 

Doddato, McDonald, 13 
Kasuya, Kawasaki, M.Y., 13

naturally explains the observed 
baryon-to-DM ratio: ⌦b/⌦DM = O(1)
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The evaporation of Q-ball might be regarded as 
the collection of elementary decay processes: 
!
!
!
!
!
!
!
!
!
However...

B# carried  
by the Q-ball

Q-ball decay rates (into binos) !
Cohen, et. al, 86

�

q



M. Yamada
13

Q-ball decay rates (into binos) !
Cohen, et. al, 86

However, Q-balls are localised squark condensations!
which carry very large baryon number !
and evaporate into fermions (e.g. quarks and gauginos)
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Q-ball decay rates (into binos) !
Cohen, et. al, 86

However, Q-balls are localised squark condensations!
which carry very large baryon number !
and evaporate into fermions (e.g. quarks and gauginos)
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Q-ball decay rates (into binos) !
Cohen, et. al, 86

However, Q-balls are localised squark condensations!
which carry very large baryon number !
and evaporate into fermions (e.g. quarks and gauginos)
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Q-ball decay rates (into binos) !
Cohen, et. al, 86

Since fermions obey the Pauli exclusion principle,!
there is a certain upper bound for their flux on Q-ball surface!

However, Q-balls are localised squark condensations!
which carry very large baryon number !
and evaporate into fermions (e.g. quarks and gauginos)
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Q-ball decay rates (into binos)

(phase space volume filled with  
 daughter particles per unit time)

dN�

dt
'

=

Fermion production rates are in fact 
saturated by the Pauli blocking effect!  (Cohen, Coleman, Georgi, Manohar, 86) !
      evaporation rates of Q-ball  
　　  into gauginos (higgsinos) are given by

!
Cohen, et. al, 86
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Fermion production rates are in fact 
saturated by the Pauli blocking effect!  (Cohen, Coleman, Georgi, Manohar, 86) !
      evaporation rates of Q-ball  
　　  into gauginos (higgsinos) are given by

Q-ball decay rates (into binos)
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Q-ball decay rates (into quarks)
Kawasaki, M.Y., 13

(# of quantum states of quarks interacting with Q-ball)

Q-balls can evaporate into quarks  
via gluino (higgsino) exchange !
   　　 (reaction energy)

nq  3⇥ 6⇥ 2

q

q

= color, flavor, left-right handed

(surface area)⇥ (2mq̃)3

96⇡2

dNq

dt
' nq⇥
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Q-ball decay rates (into quarks)
Kawasaki, M.Y., 13

(# of quantum states of quarks interacting with Q-ball)

The ratio of branchings is given by

nq  3⇥ 6⇥ 2

q

q

= color, flavor, left-right handed

(surface area)⇥ (2mq̃)3

96⇡2

dNq

dt
'

Bq

BSUSY
' 8nq

P
� n�f

⇣
m�

mq̃

⌘

Q-balls can evaporate into quarks  
via gluino (higgsino) exchange !
   　　 (reaction energy)

nq⇥
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Baryon and DM co-genesis :
Kamada, Kawasaki, M.Y., 13

!

Bq

BSUSY
' 8nq

P
� n�f

⇣
m�

mq̃

⌘

⌦b

⌦DM
=

mp

3mLSP

Bq

BSUSY
= O(1)

The ratio of branchings is given by

The baryon-DM coincidence is originated from Q-ball decay!
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Application to the CMSSM
Kamada, Kawasaki, M.Y., 14



In most parameter regions,  !
bino (LSP) thermal relic density is over-abundant for 
!
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Baryon and DM co-genesis : assumption of low TRH

In the CMSSM,  !
low reheating temperature (   ) is favoured in the following reasons: 

TRH & mLSP/10

TRH . mLSP/10

Kamada, Kawasaki, M.Y., 14
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In most parameter regions,  !
bino (LSP) thermal relic density is over-abundant for 
!
Non-thermal production of the LSP at the reheating process can be 
neglected for sufficiently low TRH 
!
Since we account for the amount of baryon asymmetry by the ADBG, 
low TRH requires a larger VEV for the flat direction.  !!
This implies that the ADBG predicts larger (= long-lived) Q-balls.  !!
 (note: Q-balls have to evaporate after DM freeze-out  
  	 to realise the co-genesis scenario) 
!
To avoid the baryonic isocurvature constraint, low TRH is favoured. 
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Baryon and DM co-genesis : assumption of low TRH

In the CMSSM,  !
low reheating temperature (   ) is favoured in the following reasons: 

TRH & mLSP/10

TRH . mLSP/10

YB / TRH h�i2

Kamada, Kawasaki, M.Y., 14

Harigaya, Mukaida, Kawasaki, M.Y., 14

Harigaya, Mukaida, Kamada,  
Kawasaki, M.Y., 14



Baryon and DM co-genesis : results
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SOFTSUSY 3.3.6 
FeynHiggs 2.10.0 

Buchmueller et. al., 12, 13 
Feng, Kant, Profumo, Sanford, 13 
Baer, Barger, Lessa, Tata, 09, 12
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Summary

We have shown that  
the baryon-DM coincidence problem can be solved in the CMSSM. 
!
!
!
!
The result is consistent with the 126 GeV Higgs boson  
and would be tested by future LHC experiments. 
!
Note that  
the scenario is applicable to a wide range of SUSY models in gravity mediation.  

30

Kamada, Kawasaki, M.Y., 14
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back up slides
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Baryon and DM co-genesis : assumption of low TRH

Kamada, Kawasaki, M.Y., 13

The annihilation of the LSP (mostly bino) should be irrelevant to realise 
the co-genesis scenario.  
!
First, we check whether the LSPs kinematically thermalised due to elastic 
scatterings (sfermion exchange) with the thermal plasma or not  
!
thermalised → use the thermally averaged annihilation cross section  
!
not thermalised → use the non-thermal annihilation cross section including 
enhancement of annihilation cross section due to resonance effects
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Inflaton 
oscillation 
dominated era Radiation  

dominated era

Q-ball decay
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→ Q-ball formation

Reheating

BBN 
(T ~ MeV)wino freeze out 

(T ~ O(10) GeV)

Q-ball

Inflation

DM density is determined 
by the thermal relic 
density of wino !
→ baryon and DM are 
generated separately

Ordinary scenario: 

an ordinary 
scenario of 
ADBG
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Inflaton 
oscillation 
dominated era Radiation  

dominated era

Q-ball decay
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→ Q-ball formation

Reheating

BBN 
(T ~ MeV)wino freeze out 

(T ~ O(10) GeV)

Q-ball

Inflation

DM thermal relic density 
is diluted by the entropy 
production of inflaton

an ordinary 
scenario of 
ADBG
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gluino exchange

u1
G, u1

B

d1
R, d1

B

d2
G, d2

R

bino exchange higgsino exchange

u1
R

d2
G

d2
B

do not change color
(left handed) 
top, bottom (Q3) 
 　→ + 6

nq = 15
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Q-ball configuration: Φ(r)  =  Φ0 exp(-r^2 / R^2)

squarks have VEVs inside Q-balls 
→ higgs does not have VEV 
→ bino and wino do not mix with each other

quarks, binos
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upper bound of flux (massless):

bino production rate

ω0

  
#
 o

f 
  
#
 o

f

Q ball

Q-ball decay rate !
Cohen, et. al, 86

<<<<
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∝ M2

∝ M2

we can neglect helicity flips 
!
×8 for M > omega_0  
∝ M2 for M < omega_0

Kawasaki, M.Y.  
hep-ph/1209.5781
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if gluinos are much lighter than squarks, 
gluino exchange processes are irrelevant

Kawasaki, M.Y.  
hep-ph/1209.5781
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Loop diagrams can be neglected inside Q-balls 
because fields interacting with Φ gain the large mass of gΦ0 (>>>>ω0) 
!
Loop diagrams can be also neglected outside Q-balls 
because the decay rate is determined by the Pauli blocking effect 
at the surface of Q-ball

ω0

Q ball
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for

for

Case of non-zero bino mass
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Charge density distribution of Q-balls 
!
Hiramatsu, Kawasaki, and Takahashi  
hep-ph/1003.1779
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49/20

Each branching ratio is given by 
    (saturated rate) × Br(elementary process).

・・・

  
#
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