

ATOM/Fastlim Recasting LHC constraints on new physics models

Kazuki Sakurai (King's College London)

In collaboration with:

Ian-Woo Kim, Michele Papucci, Andreas Weiler, Lisa Zeune

SUSY 2014 @ Manchester, 21/7/2014

Introduction

• ATLAS and CMS have performed many BSM searches.

— Constraints — ► CMSSM ► GMSB ► a simplified model

a simplified model

- Excesses (small)
- WW cross section
- Leptoquark search
- LFV Higgs
- SUSY trilepton

Constraints on the other models? Which models can fit the excesses without violating the agreement found in the other channels.

In the cut and count based measurements, one compares the # of predicted events with the # of observed events.

small excess

 $N_{\rm obs}$

 $N_{\rm SM}$

In the cut and count based measurements, one compares the # of predicted events with the # of observed events.

If the size of the BSM events is just enough to fit the excess, the BSM model point is *favoured* by data.

 $N_{\rm SM}$

RSM

 $N_{\rm obs}$

95% CL limit

$N_{\rm BSM}$

 $N_{\rm SM}$

In the cut and count based measurements, one compares the # of predicted events with the # of observed events.

If the size of the BSM events is just enough to fit the excess, the BSM model point is *favoured* by data.

If the size of the BSM events is too large, the BSM point is *excluded*.

How to calculate NBSM?

analytically calculable (factorisation)

 $N_{\mathrm{BSM}}^{(a)} = \epsilon_{\mathrm{BSM}}^{(a)} \cdot \sigma_{\mathrm{BSM}} \cdot \mathcal{L}$

known

How to calculate NBSM?

analytically calculable (factorisation)

parton shower hadronization

> b, tau jet, lepton tagging reconstruction, isolation

momentum resolution

Events fall into signal region a N $\epsilon_{\mathrm{BSI}}^{(a)}$ $N_{
m MC}$ $N_{\rm MC} \rightarrow \infty$

known

list of efficiencies: $\{\epsilon_{ ext{BSM}}^{(a)}\}$

 $(a = A1, A2, \cdots, B1, B2, \cdots, \cdots)$

reconstructed objects (jets, electrons, ...) need to be tuned for each analysis

needs to write a detector card and run detector simulation for every analysis

The procedure becomes cumbersome if multiple analyse are considered

Validation is required for every analysis

generate an event sample at the benchmark point used in the analysis paper and compare the efficiency with the one reported in the paper for every signal region

A tool to systematically calculate efficiencies for various signal regions

I-W.Kim, M.Papucci, KS, A.Weiler

Herwig(++) Pythia MadGraph

event file (HepMC, StdHep)

(Automated Testing Of Models)

A tool to systematically calculate efficiencies for various signal regions

 $\ge \{ \epsilon_{\mathrm{BSM}}^{(a)} \}$

histograms (MET, Meff, ...)

reco. objects (jets, leptons, ...)

Analyses in ATOM

Name	Short description	$E_{\rm CM}$	$\mathcal{L}_{\mathrm{int}}$	# SRs	Ref.
ATLAS_CONF_2013_024	0 lepton + (2 b-)jets + MET [Heavy stop]	8	20.5	3	[32]
ATLAS_CONF_2013_035	3 leptons + MET [EW production]	8	20.7	6	[33]
ATLAS_CONF_2013_037	1 lepton + 4(1 b-)jets + MET [Medium/heavy stop]	8	20.7	5	[34]
ATLAS_CONF_2013_047	0 leptons + 2-6 jets + MET [squarks & gluinos]	8	20.3	10	[35]
ATLAS_CONF_2013_048	2 leptons (+ jets) + MET [Medium stop]	8	20.3	4	[36]
ATLAS_CONF_2013_049	2 leptons + MET [EW production]	8	20.3	9	[37]
ATLAS_CONF_2013_053	0 leptons + 2 b-jets + MET [Sbottom/stop]	8	20.1	6	[38]
ATLAS_CONF_2013_054	0 leptons $+ \ge 7-10$ jets $+$ MET [squarks & gluinos]	8	20.3	19	[39]
ATLAS_CONF_2013_061	0-1 leptons $+ \ge 3$ b-jets $+$ MET [3rd gen. squarks]	8	20.1	9	[40]
ATLAS_CONF_2013_062	1-2 leptons + 3-6 jets + MET [squarks & gluinos]	8	20.3	13	[41]
ATLAS_CONF_2013_093	1 lepton + bb(H) + Etmiss [EW production]	8	20.3	2	[42]

• Many ATLAS (a few CMS) analyses are implemented. Most of the 2013-2014 ATLAS MET searches are implemented.

Validation

contours.

Validation

• The analyses are validated using the official cut flow tables and exclusion contours.

#	Cut Name			€ATLAS	ϵ_{Atom}	± S	tat ϵ_{At}	om/e	ATLAS	(ϵ_{Atom})	$-\epsilon_{ATL}$	AS)/Stat			
1	[01] No cut			100.	100.	±									
2	[02] Lepton (=	=1 signal)		22.82	22.732	± 0	.477 0.9	96		-0.18	4				
3	[03] 4 jets (80.	60.40.25		12.33	11.291	± 0	.336 0.9	16		-3.09	2				
4	[04] >= ♯	Cut Na	me		€ _{ATLAS}	ϵ_{Ator}	_n ± St	at	$\epsilon_{\rm Atom}/$	<i>€</i> ATLAS	$(\epsilon_{\rm A})$	$tom - \epsilon_{AT}$	las)	/Stat	
5	[05] ME 1	same fl	avour		100.	100	. ±								
6	[06] ME 2	SF: Op	posite Si	gn	97.8	98.6	± 4.	28	1.01		0.1	8			
7	[07] del 3	SF:			04.4	04.0			4			00			
8	[SRtN2] 4	SF: #	Cut Na	ame			€ATLAS	€A	tom ±	Stat	€ _{Atom} /	€ _{ATLAS}	(€ _{Ato}	$m - \epsilon_{AT}$	LAS)/Stat
9	[SRtN2] 5	SF: 1	MET >	> 50			100.	10	0. ±						
10	[SRtN2] 6	SF ²	>= 2 c	entral je	ets		76.28	71	.27 ±	0.98	0.93		-5.	12	
11	[SRtN3] 7	SE 3	2 leadi	ng je _										<u> </u>	
12	[SRtN3 '	SF. 4	4th lea	ding _	# Cut	Name				€A	TLAS	€ _{Atom}	±	Stat	$\epsilon_{Atom}/\epsilon_{ATI}$
13	[SRtN3] 8	SF: 5	baselin	ne lep	1 [01]	No cu	ıt			10	0.	100.	±	a di seconda di s	
14	[SRbC1 9	SF: 6	mjj > 5	50	2 [02]	Lepto	on (=1 si	gna	d)	22	.82	22.732	2 ±	0.477	0.996
15	[SRbC1 10	SF: 7	mT > 4	40	3 [03]	4 jets	(80,60,4	0,2	5)	12	.33	11.291	l ±	0.336	0.916
16	[SRbC1 11	SF: 8	mCT >	> 160	4 [04]	>=1t	in 4 lea	din	g jets	10	.53	9.481	±	0 308	0.9
17	[SRbC1-3] M	ET > 9	MET >	> 100	5 [05]	MET	> 100			8.	64	7.721	±	0 278	0.894
18	[SRbC1-3] M	IET/s 10	exactly	/ 2 le	6 [06]	MET	/sqrt(HT)>	5	8.	45	7.521	±	0 274	0.89
19	[SRbC1-3] m	eff > 11	SRA: 1	100 <	7 [107]	delPh	i(J2.ME	T) :	> 0.8	7.	52	7.351	±	0 271	0.977
20	[SRbC1-3] m	eff > 12	SRB: 1	mT >	8 ISR	tN21 N	4ET > 2	00	0.0	4	31	4 15	+	0 204	0.963
21	SRtN2			0.84		tN21 N	AFT/sor	- TH'	$T_{\rm D} > 13$	2	33	2.36	+	0 54	1.013
22	SRtN3			0.38		4N2] n	T > 140		1) ~ 15	1	01	2.50	-	0.04	1.015
23	SRbC1			3.11		uv2j fi () (2))	11 > 140	, 76		1.	21	2.02	±	0.112	1.058
24	SRbC2			0.59		UN3J N	1ET > 2	15		1.	57	1.76	±	0.1.3	0.941
25	SRbC3			0.16	12 [SR	tN3] N	AET/sqr	:(H'	$\Gamma) > 11$	1.	82	1.73	±	0.13	0.951
	Contraction and the second	SPACE IN ST		Contraction of the local division of the loc	13 [SR	tN3] n	hT > 200)		1.	06	1.06	±	0.103	1. "

Coding in Atom

ATLAS-CONF-2013-093

Contents

- **1** Introduction
- The ATLAS detector and data samples $\mathbf{2}$
- 3 Simulated event samples
- 4 Physics object reconstruction
- 5 Event selection
- 6 Background estimate
- Systematic uncertainties 7
- **Results and interpretation** 8
- Conclusions 9

Introduction

Supersymmetry (SUSY) [1–9] provides an extension that solves the hierarchy problem [10-13] by introdu

ATLAS_CONF_2013_093.cc

void initLocal() {

+ JET DEFINITION + TIGHT ELECTRON DEFINITION + LOOSE ELECTRON DEFINITION

7// Perform the per-event analysis bool analyzeLocal(const Event& event, const double weight) {

if(jets.size() >= 4){ _effh.PassEvent("Njet >= 4"); }else{ vetoEvent; }

```
if( jets[0].momentum().pT() > 100 ){
    _effh.PassEvent("pT(j1) > 100");
}else{ vetoEvent; }
```


+ JET DEFINITION

RangeSelector jetrange =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 20., 8000.) & RangeSelector(RangeSelector::PSEUD0_RAPIDITY, -4.5, 4.5);

radius

JetFinalState jets_Base = jetBase(base, muDetRange, FastJets::ANTIKT, jets_Base.setFSSmearing (dp.jetSim("Smear_TopoJet_ATLAS")); jets_Base.setFSEfficiency(dp.jetEff("Jet_ATLAS"));

void initLocal() {

-+ JET DEFINITION **+** TIGHT ELECTRON DEFINITION + LOOSE ELECTRON DEFINITION

 $\overline{7}//$ Perform the per-event analysis bool analyzeLocal(const Event& event, const double weight) {

if(jets.size() >= 4){ _effh.PassEvent("Njet >= 4"); }else{ vetoEvent; }

```
if( jets[0].momentum().pT() > 100 ){
    _effh.PassEvent("pT(j1) > 100");
}else{ vetoEvent; }
```

0.4, hadRange, jetrange);

$p_T > 20 \,\mathrm{GeV}, \ |\eta| < 4.5$ anti-kT, $\Delta R=0.4$ (by Fastjet) **+ JET DEFINITION**

RangeSelector jetrange =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUN 20., 8000.) RangeSelector(RangeSelector::PSEUD0_RAPIDITY, -4.5, 4.5);

JetFinalState jets_Base = jetBase(base, muDetRange, FastJets::ANTIKT, jets_Base.setFSSmearing (dp.jetSim("Smear_TopoJet_ATLAS")); jets_Base.setFSEfficiency(dp.jetEff("Jet_ATLAS"));

void initLocal() {

+ JET DEFINITION **+** TIGHT ELECTRON DEFINITION + LOOSE ELECTRON DEFINITION

 $\overline{7}$ // Perform the per-event analysis bool analyzeLocal(const Event& event, const double weight) {

```
if( jets.size() >= 4 ){
    _effh.PassEvent("Njet >= 4");
}else{ vetoEvent; }
```

```
if( jets[0].momentum().pT() > 100 ){
    _effh.PassEvent("pT(j1) > 100");
}else{ vetoEvent; }
```


+ JET DEFINITION

RangeSelector jetrange =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUN 20., 8000.) 💋 RangeSelector(RangeSelector::PSEUD0_RAPIDITY, -4.5, 4.5);

JetFinalState jets_Base = jetBase(base, muDetRange, FastJets::ANTIKT, jets_Base.setFSSmearing (dp.jetSim("Smear TopoJet ATLAS")); jets_Base.setFSEfficiency(dp.jetEff("Jet_ATLAS"));

 $p_T > 20 \,\mathrm{GeV}, \ |\eta| < 4.5$

ATLAS-CONF-2013-004

Table 5: Summary of the *in situ* LCW+JES jet energy scale systematic uncertainties for different p_{T}^{jet} and $|\eta|$ values for anti-k_t jets with R = 0.4. These values do not include pile-up, flavour or topology uncertainties.

$ \eta $ region	Fractional JES uncertainty						
	$p_{\rm T}^{\rm jet} = 20 {\rm GeV}$	$p_{\rm T}^{\rm jet} = 40 {\rm GeV}$	$p_{\rm T}^{\rm jet} = 200 \; { m GeV}$	$p_{\rm T}^{\rm jet} = 800 { m ~GeV}$	$p_{\rm T}^{\rm jet} = 1.5 { m TeV}$		
$ \eta = 0.1$	2.4%	1.2%	0.8%	1.3%	3.2%		
$ \eta = 0.5$	2.5%	1.2%	0.8%	1.3%	3.2%		
$ \eta = 1.0$	2.6%	1.4%	1.1%	1.3%	3.2%		
$ \eta = 1.5$	3.1%	2.1%	1.7%	1.4%	3.3%		
$ \eta = 2.0$	3.9%	2.9%	2.6%	1.8%			
$ \eta = 2.5$	4.6%	3.9%	3.4%				
$ \eta = 3.0$	5.2%	4.6%	3.9%				
$ \eta = 3.5$	5.8%	5.2%	4.5%				
$ \eta = 4.0$	6.2%	5.5%	5.1%				

Smear_TopoJet_ATLAS.yaml ×

- Name: Smear_TopoJet_ATLAS 1
- Tag: ATLAS 2
 - **Description: topojet**
 - Comment: table
 - **Reference: XXX**
- Smearing: 6

3

4

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

- **Type:** Interpolation IsEtaSymmetric: True
 - Interpolation: EtaBound: 4.0 **EtaBinContent:**

anti-kT, $\Delta R=0.4$ (by Fastjet)


```
Type: PredefinedMode3
    - BinStart: 0.0
     BinContent:
          [ [ -2, 9.476216187754203 ]
              -1, -0.16939888048822812
              0, 1.096643215740863e-2 ]
              1, -1.147146295333292e-5
              2, 1.9289334367006085e-8
          , [ 3, -1.5000987275723775e-1
     RinStart. 0 75
```

+ TIGHT ELECTRONS

$p_T > 25 \,\mathrm{GeV}, \ |\eta| < 2.47$

// prepare for tight electrons RangeSelector ele_range =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 25., 8000.) & RangeSelector(RangeSelector::PSEUD0_RAPIDITY, -2.47, 2.47); IsoElectron ele_smear(ele_range); ele_smear.setIso(TRACK_ISO_PT, 0.3, 0.01, 0.16, 0.0, CALO_ALL); ele_smear.setIso(CALO_ISO_ET, 0.3, 0.01, 0.18, 0.0, CALO_ALL); ele_smear.setVariableThreshold(0.0);

ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

+ TIGHT ELECTRONS

$p_T > 25 \,\mathrm{GeV}, \ |\eta| < 2.47$

// prepare for tight electrons

RangeSelector ele_range =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 25., 8000.) & RangeSelector(RangeSelector::PSEUD0_RAPIDITY, _-2.47, 2.47);

IsoElectron ele smear(ele range);

ele_smear.setIso(TRACK_ISO_PT, 0.3, 0.01, 0.16, 0.0, CALO_ALL); ele_smear.setIso(CAL0_IS0_ET, 0.3, 0.01, 0.18, 0.0, CAL0_ALL);

ele_smear.setVariableThreshold(0.0);

ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

track calorimeter isolation

$< 0.18 \cdot p_T^e$

 $\sum p_T^i < 0.16 \cdot p_T^e$

+ TIGHT ELECTRONS

$p_T > 25 \,\text{GeV}, \ |\eta| < 2.47$

 $\Delta R = 0.3$

// prepare for tight electrons

RangeSelector ele_range =

RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 25., 8000.) & RangeSelector(RangeSelector::PSEUD0_RAPIDITY, __2.47, 2.47);

IsoElectron ele smear(ele range);

ele_smear.setIso(TRACK_ISO_PT, 0.3, 0.01, 0.16, 0.0, CALO_ALL); ele_smear.setIso(CALO_ISO_ET, 0.3, 0.01, 0.18, 0.0, CALO_ALL);

ele_smear.setVariableThreshold(0.0);

ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

reconstruction efficiencies

track calorimeter isolation

$< 0.18 \cdot p_T^e$

CAL

track

 $> p_T^i < 0.16 \cdot p_T^e$

Faster model testing (with approximation)

- ATOM provides a model independent and efficient method to test BSM models.
- ATOM requires event files for inputs. However, event generation is generally time consuming and computationally expensive.
- It would be useful if we could develop an approximate method for testing BSM models without event generation.

 (\mathbf{I})

each point requires MC simulations

NBSM de/reconstruction

NBSM de/reconstruction

depends *only* on 2 or 3 BSM particle masses

$$N_{\text{QqN1:QqN1}}^{(a)} = \epsilon_{\text{QqN1:QqN1}}^{(a)} (m_{\text{Q}}, m_{\text{N1}}) \cdot \frac{1}{2}$$

$$N_{\text{GqqN1:GqqN1}}^{(a)} = \epsilon_{\text{GqqN1:GqqN1}}^{(a)} (m_{\text{G}}, m_{\text{N1}}) \cdot \frac{1}{2}$$

$$+ N_{\text{GqqN1:QqN1}}^{(a)} = \epsilon_{\text{GqqN1:QqN1}}^{(a)} (m_{\text{G}}, m_{\text{Q}}, m_{\text{Q}}) \cdot \frac{1}{2}$$

•

 $\mathbf{Q} = \tilde{q}$ $G = \tilde{g}$ $N1 = \tilde{\chi}_1^0$

$\sigma_{\mathrm{QQ}} \cdot BR \cdot \mathcal{L}$

$\cdot \sigma_{ m GG} \cdot BR \cdot \mathcal{L}$

$(n_{\rm N1}) \cdot \sigma_{\rm GQ} \cdot BR \cdot \mathcal{L}$

NBSM de/reconstruction

$\sigma_{\mathrm{QQ}} \cdot BR \cdot \mathcal{L}$

$\sigma_{ m GG} \cdot BR \cdot \mathcal{L}$

$\sigma_{\mathrm{GQ}} \cdot BR \cdot \mathcal{L}$

http://fastlim.web.cern.ch/fastlim/ Fastlin

cross section tables

 $m_Q m_G \sigma$

...

300 300 87.94

300 350 34.98

information on SRs: $N_{\rm UL}^{(a)}, N_{\rm SM}^{(a)}, N_{\rm obs}^{(a)}$

Papucci, KS, Weiler, Zeune 1402.0492

efficiency tables

http://fastlim.web.cern.ch/fastlim/

Papucci, KS, Weiler, Zeune 1402.0492

http://fastlim.web.cern.ch/fastlim/ Fastlin

Papucci, KS, Weiler, Zeune 1402.0492

http://fastlim.web.cern.ch/fastlim/

Fastlim

No MC sim. required

Papucci, KS, Weiler, Zeune 1402.0492

output: $N_{\rm SUSY}^{(a)}/N_{\rm III}^{(a)}, CL_s^{(a)}$

Naming topologies

e, m, ta n NU, NUT

Truncation of soft decays

$m_{\rm C1} \simeq m_{\rm N1}$

very soft and do not affect efficiencies $G \rightarrow btC1 \rightarrow qqN1$ \Box GbtN1

note: this introduces topologies as if EM charge is not conserved.

useful for wino and higgsino scenarios

Implemented topologies

topologies in Fastlim 1.0

GbB1bN1_GbB1bN1 GbB1bN1_GbB1tN1 GbB1tN1_GbB1tN1 GtT1bN1_GtT1bN1 GtT1bN1_GtT1tN1 GtT1tN1_GtT1tN1 (GbB2bN1_GbB2bN1) (GbB2bN1_GbB2tN1) (GbB2tN1_GbB2tN1) (GtT2bN1_GtT2bN1) (GtT2bN1_GtT2tN1) (GtT2tN1_GtT2tN1) GbB1bN1_GbB2bN1 GbB1bN1_GbB2tN1 GbB1tN1_GbB2bN1 GbB1tN1_GbB2tN1 GtT1bN1_GtT2bN1 GtT1bN1_GtT2tN1 GtT1tN1_GtT2bN1 GtT1tN1_GtT2tN1

GbbN1_GbbN1 GbbN1_GbtN1 GbbN1_GttN1 GbbN1_GqqN1 GbtN1_GbtN1 GbtN1_GttN1 GbtN1_GqqN1 GttN1_GttN1 GttN1_GqqN1 GqqN1_GqqN1

GbbN1_GgN1 GbtN1_GgN1 GgN1_GgN1 GgN1_GttN1 GgN1_GqqN1

T1bN1_T1bN1 T1bN1_T1tN1 T1tN1_T1tN1 $(B1bN1_B1bN1)$ (B1bN1_B1tN1) (B1tN1_B1tN1) $(B2bN1_B2bN1)$ $(B2bN1_B2tN1)$ $(B2tN1_B2tN1)$ $(T2bN1_T2bN1)$ $(T2bN1_T2tN1)$ $(T2tN1_T2tN1)$

not all topologies are implemented

the result may be underestimated but at least conservative

Coverage

 M_{Q_3} vs. μ

M_{U_3} vs. μ

 $M_{\tilde{g}}$ vs. μ

$M_{\tilde{g}}$ vs. $M_{U_3}(=M_{Q_3})$

M_{Q_3} vs. tan β

Overall, very good coverage The main deficit come from GtT1tN1_GbB1bN1 T1->qqB1

$coverage = \frac{\sigma^{implimented}}{\sigma_{tot}}$

Implemented analyses

analyses in Fastlim-1.0

Name	Short description	$E_{\rm CM}$	$\mathcal{L}_{\mathrm{int}}$	# SRs
ATLAS_CONF_2013_024	0 lepton + (2 b-)jets + MET [Heavy stop]	8	20.5	3
ATLAS_CONF_2013_035	3 leptons + MET [EW production]	8	20.7	6
ATLAS_CONF_2013_037	1 lepton + 4(1 b-)jets + MET [Medium/heavy stop]	8	20.7	5
ATLAS_CONF_2013_047	0 leptons + 2-6 jets + MET [squarks & gluinos]	8	20.3	10
ATLAS_CONF_2013_048	2 leptons (+ jets) + MET [Medium stop]	8	20.3	4
ATLAS_CONF_2013_049	2 leptons + MET [EW production]	8	20.3	9
ATLAS_CONF_2013_053	0 leptons + 2 b-jets + MET [Sbottom/stop]	8	20.1	6
ATLAS_CONF_2013_054	0 leptons $+ \ge 7-10$ jets $+$ MET [squarks & gluinos]	8	20.3	19
ATLAS_CONF_2013_061	0-1 leptons $+ \ge 3$ b-jets $+$ MET [3rd gen. squarks]	8	20.1	9
ATLAS_CONF_2013_062	1-2 leptons + 3-6 jets + MET [squarks & gluinos]	8	20.3	13
ATLAS_CONF_2013_093	1 lepton + bb(H) + Etmiss [EW production]	8	20.3	2

Most 2013 ATLAS analyses are implemented (CMS analyses will be implemented soon).

- Event generation was done using MadGraph 5. The sample include up to extra 1 parton • emission at ME level, matched to parton shower using MLM scheme.
- ATOM is used for efficiency estimation.

Efficiency tables

efficiency tables are standard text file.

- should be given for each signal region and each topology •
- any 3rd party's efficiency tables can be easily incorporated.

			1.1.14					
global coordinating effort to	\varTheta 🖸 🖸 🗋 a							
generate efficiency mans and	FOLDERS							
generate enterency maps and	▼ fastlim-devel							
share	analyses info	1	ATLA	S_2013_C0	NF_2013_024			
https://indiag.comp.ch/overt/07000/	AtomReader	23	mG	mN1	⁶ efficiency	error		
nups://indico.cem.cn/eveni/272303/	diagrams	4	300	114	0.0	0.0		
	T officiency tables	5	300	57	0.000412881915772	0.00010		
	<pre> emclency_tables </pre>	6	300	1	0.000934725035052	0.00015		
	GbB1bN1_GbB1bN1	7	350	164	0.000394331484904	9.85634		
	GbB1bN1_GbB1tB1	8	350	82	0.00175910335989	0.000210		
	ChB1bN1_CbB1tN1	9	350	1	0.00211810983912	0.000230		
		10	410	224	0.000648757749051	0.00012		
	GbB1tN1_GbB1tN1	11	410	149	0.00205605189083	0.000224		
	GbbN1_GbbN1	12	410	74	0.00413283771887	0.000317		
	GbbN1 GbtN1	13	410	1	0.00459346597887	0.000335		
	= 07-1/	14	480	294	0.000765696784074	0.00013		
	▼ 81ev	15	480	196	0.00510688836105	0.000347		
	ATLAS_2012_CONF_2012_109	16	480	98	0.00833134399618	0.000444		
	ATLAS 2013 CONF 2013 007	17	480	1	0.00902741483347	0.000461		
		18	560	374	0.000838926174497	0.00013		
	▼ ATLAS_2013_CONF_2013_024	19	560	280	0.00488321739531	0.000334		
	ana_3_cut_0.effi	20	560	186	0.012501161818	0.000535		
	ana 3 cut 1.effi	21	560	92	0.012756401352	0.000539		

How to use?

http://fastlim.web.cern.ch/fastlim/ 1) download the program from: (2) untar and enter the fastlim-1.0 directory (3) type (assuming the input file name is input.slha):

./fastlim input.slha

Cr	oss Section	n –				
Ecm Total	Implemen	ted	Coverage			
8TeV 20.234fb	20.2	3fb	99.98%			
Analy	sis E/TeV	L∗fb		Signal Region:	Nev/N_UL	CLs
ATLAS_CONF_2013_	024 8	20.5		SR1: MET > 200:	0.6946	0.1224
ATLAS_CONF_2013_	024 8	20.5		SR2: MET > 300:	1.5321	
ATLAS_CONF_2013_	024 8	20.5		SR3: MET > 350:	1.1153	0.0132
ATLAS_CONF_2013_	035 8	20.7		SRnoZa:	0.0000	
ATLAS_CONF_2013_	035 8	20.7		SRnoZb:	0.0000	
ATLAS_CONF_2013_	035 8	20.7		SRnoZc:	0.0000	
ATLAS_CONF_2013_	035 8	20.7		SRZa:	0.0000	
ATLAS_CONF_2013_	035 8	20.7		SRZb:	0.0000	
ATLAS_CONF_2013_	035 8	20.7		SRZc:	0.0000	
ATLAS_CONF_2013_	037 8	20.7		SRtN2:	0.7346	0.1550

Exclude <== Exclude

One can test any model confronting with the existing ATLAS/CMS analyses using **ATOM** and **Fastlim**.

In this way, one can derive the constraints and can fit the excesses. => Rolbiecki's talk on Tuesday, for a concrete example.

 ATOM takes event files as inputs and works for any BSM models. (Soon to be public)

 Fastlim takes SLHA files as inputs and runs very fast. (Already public, download from http://fastlim.web.cern.ch/fastlim)

Backup

Natural SUSY

Natural SUSY contains a minimum particle content that makes the EWSB natural.

$$-\frac{m_Z^2}{2} \simeq |\mu|^2 + m_{H_u}^2(\Lambda) + \Delta m_{H_u}^2$$

µ is higgsino mass: higgsino is lightest stop 1 loop correction to Δm_{Hu^2} : stop is very light gluino 2-loop correction to Δm_{Hu^2} : gluino is light

$\mathcal{M}_{Q3} \text{ VS } \mu$ $\mathcal{L} \supset y_t \cdot t_R \widetilde{Q}_3 \widetilde{H}_u + y_b \cdot b_R \widetilde{Q}_3 \widetilde{H}_d \quad \text{coverage} =$ $\begin{cases} T1 \rightarrow t \text{ N1} \\ B1 \rightarrow t \text{ C1 } (\text{C1} \rightarrow \text{N1}) \end{cases}$

 $\tan\beta = 10$

$\sigma^{ ext{implimented}}$

 σ_{tot}

good coverage

Mag vs µ

coverage =

for B1 \rightarrow bN1 topology designed for T1 \rightarrow tN1 topology

$\sigma^{ ext{implimented}}$

 σ_{tot}

good coverage

Charged LSP

μ [GeV]

$$\begin{split} & \underset{\mathcal{L} \supset y_t \, \cdot \, \widetilde{t}_R Q_3 \widetilde{H}_u}{\mathcal{L} \supset y_t \, \cdot \, \widetilde{t}_R Q_3 \widetilde{H}_u} \\ & \underset{\mathrm{BR}(\mathrm{T1bN1}_{\mathrm{T1tN1}}) > \mathrm{BR}(\mathrm{T1bN1}_{\mathrm{T1tN1}}) > \mathrm{BR}(\mathrm{T1tN1}_{\mathrm{T1tN1}}) \\ & \underset{\mathrm{asymmetric topology}}{} \end{split}$$

$\tan\beta = 10$

Mg vs Mg3

GtT1tN1_GbB1bN1 (4D)

distance from the origin is sensitive to the fine-tuning

Split SUSY

spread SUSY 8TeV: GC1N1 + C1N2N1

CMSSM

NUHM

NUHM 8TeV: QGC1N2N1+C1N2N1

SModelS

 SModelS is a tool to automatically check the simplified model constraints on a given BSM model.

Sabine Kraml, et.al, 2013

Experimental Analyses

Fitting Excesses

Excesses

Analysis	√S	lumi	SR	Exp
ATLAS WW	7	4.6	comb	1219 ± 87
CMS WW	7	4.9	comb	1076 ± 62
CMS WW	8	5.3	comb	986 ± 60
ATLAS Higgs WW	8	20.7	WW CR	3110 ± 220
ATLAS 1-2 lep + jets	8	20.1	dimuon	1.9 ± 1.8
ATLAS trilepton	8	20.3	SR0ta01	23 ± 6.2
			SR0ta06	6.6 ± 3.2
			SR0ta10	16.4 ± 4.7

Analysis	√s	lumi	SR	Exp
ATLAS 1-2 lep + jets	7	4.6	comb	1219 ± 87
ATLAS 2lep razor	7	4.9	comb	1076 ± 62
ATLAS trilepton	8	5.3	comb	986 ± 60

Obs	s.d.
1325	~1σ
1134	~1o
1111	~2o

ϵ_{BG} : estimation is harder

momentum is badly mismeasured fake lepton, mistag

$N_{\rm SM}$

Signal Region

 ϵ_{BG} : estimation is harder ϵ_{BSM} : estimation is easier

> not too sensitive to momentum resolution, fake rates, mistag

 $N_{\rm SM}$

