ATOM/Fastlim

Recasting LHC constraints on new physics models

Kazuki Sakurai
(King's College London)

In collaboration with:
Ian-Woo Kim, Michele Papucci, Andreas Weiler, Lisa Zeune

Introduction

- ATLAS and CMS have performed many BSM searches.
- Constraints -

CMSSM
, GMSB
〉 a simplified model

- a simplified model

〉...
$\%$ Constraints on the other models?

* Which models can fit the excesses without violating the agreement found in the other channels.

In the cut and count based measurements, one compares the \# of predicted events with the \# of observed events.

In the cut and count based measurements, one compares the \# of predicted events with the \# of observed events.

- If the size of the BSM events is just enough to fit the excess, the BSM model point is favoured by data.

95\% CL limit

In the cut and count based measurements, one compares the \# of predicted events with the \# of observed events.
) If the size of the BSM events is just enough to fit the excess, the BSM model point is favoured by data.

If the size of the BSM events is too large, the BSM point is excluded.

How to calculate Nbsm?

How to calculate Nbsm?

$$
\epsilon_{\mathrm{BSM}}^{(a)}=\lim _{N_{\mathrm{MC}} \rightarrow \infty} \frac{N\binom{\text { Events fall into }}{\text { signal region } a}}{N_{\mathrm{MC}}}
$$

Detector simulation
Delphes, PGS, ... in-house C++, python codes

Validation is required for every analysis

 (jets, electrons, ...) need to be tuned for each analysisneeds to write a detector card and run detector simulation for every analysis

generate an event sample at the benchmark point used in the analysis paper and compare the efficiency with the one reported in the paper for every signal region

The procedure becomes cumbersome if multiple analyse are considered

Analyses in ATOM

Name	Short description	$E_{\text {CM }}$	$\mathcal{L}_{\text {int }}$	\# SRs	Ref.
ATLAS_CONF_2013_024	0 lepton + (2 b-)jets + MET [Heavy stop]	8	20.5	3	$[32]$
ATLAS_CONF_2013_035	3 leptons + MET [EW production]	8	20.7	6	$[33]$
ATLAS_CONF_2013_037	1 lepton $+4(1$ b-)jets + MET [Medium/heavy stop]	8	20.7	5	$[34]$
ATLAS_CONF_2013_047	0 leptons + 2-6 jets + MET [squarks \& gluinos]	8	20.3	10	$[35]$
ATLAS_CONF_2013_048	2 leptons (+ jets) + MET [Medium stop]	8	20.3	4	$[36]$
ATLAS_CONF_2013_049	2 leptons + MET [EW production]	8	20.3	9	$[37]$
ATLAS_CONF_2013_053	0 leptons + 2 b-jets + MET [Sbottom/stop]	8	20.1	6	$[38]$
ATLAS_CONF_2013_054	0 leptons $+\geq 7-10$ jets + MET [squarks \& gluinos]	8	20.3	19	$[39]$
ATLAS_CONF_2013_061	$0-1$ leptons $+\geq 3$ b-jets + MET [3rd gen. squarks]	8	20.1	9	$[40]$
ATLAS_CONF_2013_062	$1-2$ leptons $+3-6$ jets + MET [squarks \& gluinos]	8	20.3	13	$[41]$
ATLAS_CONF_2013_093	1 lepton + bb(H) + Etmiss [EW production]	8	20.3	2	$[42]$

- Many ATLAS (a few CMS) analyses are implemented. Most of the 2013-2014 ATLAS MET searches are implemented.

Validation

- The analyses are validated using the official cut flow tables and exclusion contours.

Validation

- The analyses are validated using the official cut flow tables and exclusion contours.

Coding in Atom

ATLAS_CONF_2013_093.cc

+ JET DEFINITION

```
RangeSelector jetrange =
    RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 20., 8000.) &
    RangeSelector(RangeSelector::PSEUDO_RAPIDITY, -4.5, 4.5);
```

```
//
radius
JetFinalState jets_Base = jetBase(base, muDetRange, FastJets::ANTIKT, 0.4, hadRange, jetrange);
jets_Base.setFSSmearing ( dp.jetSim( "Smear_TopoJet_ATLAS" ) );
jets_Base.setFSEfficiency( dp.jetEff( "Jet_ATLAS" ) );
```

```
void initLocal() {
```

* TIGHT ELECTRON DEFINITION
+ LOOSE ELECTRON DEFINITION
:
\}
/// Perform the per-event analysis
bool analyzeLocal(const Event\& event, const double weight) \{
\vdots
if(jets.size() >= 4)\{
_effh.PassEvent("Njet >= 4");
\}else\{ vetoEvent; \}
if(jets[0].momentum().pT() > 100)\{
_effh. PassEvent("pT(j1) > 100");
\}else\{ vetoEvent; \}
!

ATLAS-CONF-2013-004

Table 5: Summary of the in situ LCW+JES jet energy scale systematic uncertainties for different $p_{\mathrm{T}}^{\mathrm{jet}}$ and $|\eta|$ values for anti- k_{t} jets with $R=0.4$. These values do not include pile-up, flavour or topology uncertainties.

$\|\boldsymbol{\eta}\|$ region	Fractional JES uncertainty					
	$\boldsymbol{p}_{\mathbf{T}}^{\text {jet }}=\mathbf{2 0} \mathbf{~ G e V}$	$\boldsymbol{p}_{\mathbf{T}}^{\text {jet }}=\mathbf{4 0} \mathbf{G e V}$	$\boldsymbol{p}_{\mathbf{T}}^{\text {jet }}=\mathbf{2 0 0} \mathbf{G e V}$	$\boldsymbol{p}_{\mathbf{T}}^{\text {jet }}=\mathbf{8 0 0} \mathbf{G e V}$	$\boldsymbol{p}_{\mathbf{T}}^{\text {jet }}=\mathbf{1 . 5} \mathbf{~ T e V}$	
$\|\eta\|=0.1$	2.4%	1.2%	0.8%	1.3%	3.2%	
$\|\eta\|=0.5$	2.5%	1.2%	0.8%	1.3%	3.2%	
$\|\eta\|=1.0$	2.6%	1.4%	1.1%	1.3%	3.2%	
$\|\eta\|=1.5$	3.1%	2.1%	1.7%	1.4%	3.3%	
$\|\eta\|=2.0$	3.9%	2.9%	2.6%	1.8%		
$\|\eta\|=2.5$	4.6%	3.9%	3.4%			
$\|\eta\|=3.0$	5.2%	4.6%	3.9%			
$\|\eta\|=3.5$	5.8%	5.2%	4.5%			
$\|\eta\|=4.0$	6.2%	5.5%	5.1%			

```
Smear_TopoJet_ATLAS.yaml ×

\section*{Smear_TopoJet_ATLAS.yaml}
```

Name: Smear_TopoJet_ATLAS

```
Name: Smear_TopoJet_ATLAS
```

Name: Smear_TopoJet_ATLAS
Tag: ATLAS
Tag: ATLAS
Tag: ATLAS
Description: topojet
Description: topojet
Description: topojet
Comment: table
Comment: table
Comment: table
Reference: XXX
Reference: XXX
Reference: XXX
Smearing:
Smearing:
Smearing:
Type: Interpolation
Type: Interpolation
Type: Interpolation
IsEtaSymmetric: True
IsEtaSymmetric: True
IsEtaSymmetric: True
Interpolation:
Interpolation:
Interpolation:
Type: PredefinedMode3
Type: PredefinedMode3
Type: PredefinedMode3
EtaBound: 4.0
EtaBound: 4.0
EtaBound: 4.0
EtaBinContent:
EtaBinContent:
EtaBinContent:
- BinStart: 0.0
- BinStart: 0.0
- BinStart: 0.0
BinContent:
BinContent:
BinContent:
[[-2, 9.476216187754203]
[[-2, 9.476216187754203]
[[-2, 9.476216187754203]
, [-1, -0.16939888048822812
, [-1, -0.16939888048822812
, [-1, -0.16939888048822812
, [0, 1.096643215740863e-2]
, [0, 1.096643215740863e-2]
, [0, 1.096643215740863e-2]
, [1, -1.147146295333292e-5
, [1, -1.147146295333292e-5
, [1, -1.147146295333292e-5
, [2, 1.9289334367006085e-8
, [2, 1.9289334367006085e-8
, [2, 1.9289334367006085e-8
, [3, -1.5000987275723775e-1

```
```

 , [3, -1.5000987275723775e-1
    ```
```

 , [3, -1.5000987275723775e-1
    ```
```

* TIGHT ELECTRONS

// prepare for tight electrons

RangeSelector ele_range =
RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 25., $8 \mathbf{8 0 0 0 .)}$ \&
RangeSelector(RangeSelector::PSEUDO_RAPIDITY, -2.47, 2.47);
IsoElectron ele_smear(ele_range);
ele_smear.setIso(TRACK_ISO_PT, 0.3, 0.01, 0.16, 0.0, CALO_ALL);
ele_smear.setIso(CALO_ISO_ET, 0.3, 0.01, 0.18, 0.0, CALO_ALL);
ele_smear.setVariableThreshold(0.0);
ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

* TIGHT ELECTRONS

$p_{T}>25 \mathrm{GeV},|\eta|<2.47$

// prepare for tight electrons

RangeSelector ele_range =
RangeSelector(RangeSelector::TRANSVERSE_MOMENTUM, 25., 8 B000.) \&
RangeSelector(RangeSelector::PSEUDO_RAPIDITY, -2.47, 2.47);
IsoElectron ele smear(ele range);
$\begin{array}{lll}\text { ele_smear.setIso(TRACK_ISO_PT, } 0.3, & 0.01,0.16,0.0, \text { CALO_ALL); } \\ \text { ele_smear.setIso(CALO_IS0_ET, } 0.3,0.01,0.18,0.0, \text { CALO_ALL); } & \text { traCK }\end{array}$ ele_smear. setVariableThreshold(0.0);
ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

// prepare for tight electrons

RangeSelector ele_range =

RangeSelector(RangeSelector: :TRANSVERSE_MOMENTUM, 25., $\sqrt{3000 .) ~ \& ~}$
RangeSelector(RangeSelector::PSEUDO_RAPIDITY, -2.47, 2.47);

IsoElectron ele smear(ele range);

ele_smear.setIso(TRACK_ISO_PT, $0.3,0.01,0.16,0.0$, CALO_ALL);
ele_smear.setIso(CALO_ISO_ET, $0.3,0.01,0.18,0.0$, CALO_ALL); ele_smear.setVariableThreshold(0.0); ele_smear.setFSSmearing (dp.electronSim("Smear_Electron_ATLAS")); ele_smear.setFSEfficiency(dp.electronEff("Electron_Tight_ATLAS"));

calorimeter

 isolation
reconstruction efficiencies

Faster model testing (with approximation)

- ATOM provides a model independent and efficient method to test BSM models.
- ATOM requires event files for inputs. However, event generation is generally time consuming and computationally expensive.
- It would be useful if we could develop an approximate method for testing BSM models without event generation.

NBSM de/reconstruction

$\mathrm{Q}=\tilde{q}$
$\mathrm{G}=\tilde{g}$
$\mathrm{~N} 1=\tilde{\chi}_{1}^{0}$

Nesm de/reconstruction

NBsm de/reconstruction

cross section tables

efficiency tables

$$
\text { information on SRs: } \quad N_{\mathrm{UL}}^{(a)}, N_{\mathrm{SM}}^{(a)}, N_{\mathrm{obs}}^{(a)}
$$

cross section tables

efficiency tables

$$
\text { information on SRs: } \quad N_{\mathrm{UL}}^{(a)}, N_{\mathrm{SM}}^{(a)}, N_{\mathrm{obs}}^{(a)}
$$

cross section tables efficiency tables

cross section tables efficiency tables

No MC sim. required
output: $N_{\mathrm{SUSY}}^{(a)} / N_{\mathrm{UL}}^{(a)}, C L_{s}^{(a)}$

Naming topologies

SM	g	gam, z, w, h	q	t	b	$e, m, t a$	n
BSM	G	$N 1, \ldots, N 4, C 1, C 2$	Q	$T 1, T 2$	$B 1, B 2$	$E, M, T A U$	NU, NUT

Truncation of soft decays

$$
\begin{gathered}
m_{\mathrm{Cl} 1} \sim m_{\mathrm{N} 1} \\
\mathrm{C1} \xrightarrow[\lambda_{q}]{\pi^{q}} \mathrm{N1}
\end{gathered}
$$

very soft and do not affect efficiencies

$$
\mathrm{G} \rightarrow \mathrm{btC} 1 \rightarrow \mathrm{qqN1} \leadsto \mathrm{GbtN} 1
$$

- note: this introduces topologies as if EM charge is not conserved.
useful for wino and higgsino scenarios

Implemented topologies

topologies in Fastlim 1.0

GbB1bN1_GbB1bN1 GbB1bN1_GbB1tN1 GbB1tN1_GbB1tN1 GtT1bN1_GtT1bN1 GtT1bN1_GtT1tN1 GtT1tN1_GtT1tN1 (GbB2bN1_GbB2bN1) (GbB2bN1_GbB2tN1) (GbB2tN1_GbB2tN1) (GtT2bN1_GtT2bN1) (GtT2bN1_GtT2tN1) (GtT2tN1_GtT2tN1) [GbB1bN1_GbB2bN1] [GbB1bN1_GbB2tN1] [GbB1tN1_GbB2bN1] [GbB1tN1_GbB2tN1] [GtT1bN1_GtT2bN1] [GtT1bN1_GtT2tN1] [GtT1tN1_GtT2bN1]
[GtT1tN1_GtT2tN1]

GbbN1_GgN1 GbtN1_GgN1 GgN1_GgN1 GgN1_GttN1 GgN1_GqqN1

T1bN1_T1bN1 T1bN1_T1tN1

T1tN1_T1tN1
(B1bN1-B1bN1)
(B1bN1B1tN1)
(B1tN1_B1tN1)
(B2bN1 B2bN1)
(B2bN1 B2tN1)
(B2tN1 B2tN1)
(T2bN1_T2bN1)
(T2bN1_T2tN1)
(T2tN1_T2tN1)
not all topologies are implemented

the result may be underestimated but at least conservative

$$
\text { (ค) coverage }=\frac{\sigma^{\text {implimented }}}{\sigma_{\text {tot }}}
$$

$M_{U_{3}}$ vs. μ

$M_{\tilde{g}}$ vs. $M_{U_{3}}\left(=M_{Q_{3}}\right)$

$M_{Q_{3} \text { vs: }} \mu$
$M_{\tilde{g}}$ VS $\cdot \mu$

Overall, very good coverage

The main deficit come from GtT1tN1_GbB1bN1
T1->qqB1

Implemented analyses

analyses in Fastlim-1.0

Name	Short description	E_{CM}	$\mathcal{L}_{\text {int }}$	\# SRs
ATLAS_CONF_2013_024	0 lepton + (2 b-)jets + MET [Heavy stop]	8	20.5	3
ATLAS_CONF_2013_035	3 leptons + MET [EW production]	8	20.7	6
ATLAS_CONF_2013_037	1 lepton $+4(1$ b-)jets + MET [Medium/heavy stop]	8	20.7	5
ATLAS_CONF_2013_047	0 leptons + 2-6 jets + MET [squarks \& gluinos]	8	20.3	10
ATLAS_CONF_2013_048	2 leptons (+ jets) + MET [Medium stop]	8	20.3	4
ATLAS_CONF_2013_049	2 leptons + MET [EW production]	8	20.3	9
ATLAS_CONF_2013_053	0 leptons + 2 b-jets + MET [Sbottom/stop]	8	20.1	6
ATLAS_CONF_2013_054	0 leptons $+\geq$ 7-10 jets + MET [squarks \& gluinos]	8	20.3	19
ATLAS_CONF_2013_061	$0-1$ leptons $+\geq 3$ b-jets + MET [3rd gen. squarks]	8	20.1	9
ATLAS_CONF_2013_062	1-2 leptons $+3-6$ jets + MET [squarks \& gluinos]	8	20.3	13
ATLAS_CONF_2013_093	1 lepton + bb(H) + Etmiss [EW production]	8	20.3	2

- Most 2013 ATLAS analyses are implemented (CMS analyses will be implemented soon).
- Event generation was done using MadGraph 5. The sample include up to extra 1 parton emission at ME level, matched to parton shower using MLM scheme.
- ATOM is used for efficiency estimation.

Efficiency tables

- efficiency tables are standard text file.
- should be given for each signal region and each topology
- any 3rd party's efficiency tables can be easily incorporated.
global coordinating effort to generate efficiency maps and share
https://indico.cern.ch/event/272303/

$\bigcirc \bigcirc \bigcirc$					
FOLDERS					
- fastlim-devel					
- analyses_info	1	ATLAS	2013	NF_2013_024	
- AtomReader	3	mG	mN	efficiency	error
- diagrams	4	300	114	0.0	0.0
\checkmark efficiency tables	5	300	57	0.000412881915772	0.000105
	6	300	1	0.000934725035052	0.00015
> GbB1bN1_GbB1bN1	7	350	164	0.000394331484904	9.85634
- GbB1bN1_CbB1tB1	8	350	82	0.00175910335989	0.0002100
- GbB1bN1_GbB1tN1	9	350	1	0.00211810983912	0.0002308
- GbB1tN1_GbB1tN1	10	410	224	0.000648757749051	0.00012
- GbbN1_GbbN1	12	410	74	0.00413283771887	0.000317
- GbbN1_GbtN1	13	410	1	0.00459346597887	0.0003351
\checkmark GbbN_-GbiN1	14	480	294	0.000765696784074	$0.00013{ }^{\text {a }}$
$\checkmark 8 \mathrm{TeV}$	15	480	196	0.00510688836105	0.0003475
- ATLAS_2012_CONF_2012_109	16	480	98	0.00833134399618	0.000444
- ATLAS_2013_CONF_2013_007	17	480	1	0.00902741483347	0.000461
- ATLAS_2013_CONF_2013_024	18	560	374	0.000838926174497	0.000137
	19	560	280	0.00488321739531	0.0003345
ana_3_cut_0.effi	20	560	186	0.012501161818	0.0005355
	21	560	92	0.012756401352	$0.000539 ¢$

How to use?

(1) download the program from: http://fastlim.web.cern.ch/fastlim/
(2) untar and enter the fastlim-1.0 directory
(3) type (assuming the input file name is input.slha):

./fastlim input.slha

 Ecm Cross 8 TeV 20.234 fb	Section Implemen 20.2	ted 3 fb	$\begin{array}{r} \text { Coverage } \\ 99.98 \% \end{array}$				
Analysis	E/TeV	L*fb		Signal Region:	Nev/N_UL	CLs	
ATLAS_CONF_2013_024	4	20.5		SR1: MET > 200:	0.6946	0.1224	
ATLAS_CONF_2013_024	8	20.5		SR2: MET > 300:	1.5321	--	$<==$ Exclude
ATLAS_CONF_2013_024	4	20.5		SR3: MET > 350:	1.1153	0.0132	$<==$ Exclude
ATLAS_CONF_2013_035	-8	20.7		SRnoZa:	0.0000	- --	
ATLAS_CONF_2013_035	-8	20.7		SRnoZb:	0.0000	--	
ATLAS_CONF_2013_035	-8	20.7		SRnozc:	0.0000	--	
ATLAS_CONF_2013_035	-8	20.7		SRZa:	0.0000	--	
ATLAS_CONF_2013_035	-8	20.7		SRZb:	0.0000	--	
ATLAS_CONF_2013_035	-8	20.7		SRZc:	0.0000	--	
ATLAS_CONF_2013_037	- 8	20.7		SRtN2:	0.7346	0.1550	

Summary

- One can test any model confronting with the existing ATLAS/CMS analyses using ATOM and Fastlim.
- In this way, one can derive the constraints and can fit the excesses. => Rolbiecki's talk on Tuesday, for a concrete example.
- ATOM takes event files as inputs and works for any BSM models. (Soon to be public)
- Fastlim takes SLHA files as inputs and runs very fast. (Already public, download from http://fastlim. web.cern.ch/fastlim)

Backup

Natural SUSY

- Natural SUSY contains a minimum particle content that makes the EWSB natural.

$$
-\frac{m_{Z}^{2}}{2} \simeq|\mu|^{2}+m_{H_{u}}^{2}(\Lambda)+\Delta m_{H_{u}}^{2}
$$

μ is higgsino mass: higgsino is lightest

stop 1 loop correction to $\Delta m_{H u^{2}}{ }^{2}$: stop is very light gluino 2-Hoop correction to $\Delta \mathrm{m}_{\mathrm{H}}{ }^{2}$: gluino is light

- Only a few particles are accessible at the LHC
\Rightarrow nice playground for Fastlim 1.0

Моз vs μ

$$
\mathcal{L} \supset y_{t} \cdot t_{R} \widetilde{Q}_{3} \widetilde{H}_{u}+y_{b} \cdot b_{R} \widetilde{Q}_{3} \widetilde{H}_{d} \quad \text { coverage }=\frac{\sigma^{\text {implimented }}}{\sigma_{\text {tot }}}
$$

$$
\left\{\begin{array}{l}
\mathrm{T} 1 \rightarrow t \mathrm{~N} 1 \\
\mathrm{~B} 1 \rightarrow t \mathrm{C} 1(\mathrm{C} 1 \rightarrow \mathrm{~N} 1)
\end{array}\right.
$$

$$
\tan \beta=10
$$

Моз vs μ

$$
\text { coverage }=\frac{\sigma^{\text {implimented }}}{\sigma_{\text {tot }}}
$$

for $\mathrm{B} 1 \rightarrow \mathrm{bN} 1$ topology designed for $\mathrm{T} 1 \rightarrow \mathrm{tN} 1$ topology

Mo3 vs $\tan \beta$

$$
\mathcal{L} \supset y_{t} \cdot t_{R} \widetilde{Q}_{3} \widetilde{H}_{u}+y_{b} \cdot b_{R} \widetilde{Q}_{3} \widetilde{H}_{d}
$$

$$
\tan \beta \text { enhancement } \Rightarrow\left\{\begin{array}{l}
\mathrm{T} 1 \rightarrow b \mathrm{C} 1(\mathrm{C} 1 \rightarrow \mathrm{~N} 1) \\
\mathrm{B} 1 \rightarrow b \mathrm{~N} 1
\end{array}\right.
$$

$$
\mu=200 \mathrm{GeV}
$$

$$
\begin{aligned}
& \text { MU3 VS } \mu \\
& \mathcal{L} \supset y_{t} \cdot \tilde{t}_{R} Q_{3} \widetilde{H}_{u}
\end{aligned}
$$

$\mathrm{BR}\left(\mathrm{T} 1 \mathrm{bN} 1 _\mathrm{T} 1 \mathrm{tN} 1\right)>\mathrm{BR}\left(\mathrm{T} 1 \mathrm{bN} 1 _\mathrm{T} 1 \mathrm{bN} 1\right)>\mathrm{BR}\left(\mathrm{T} 1 \mathrm{tN} 1 _\mathrm{T} 1 \mathrm{tN} 1\right)$

asymmetric topology

$$
\tan \beta=10
$$

Mg vs Mo3
designed for $\mathrm{G} \rightarrow$ ffN1 \quad for $\mathrm{T} 1 \rightarrow$ tN1

$A_{t} \vee s M_{Q, \cup 3}$

- distance from the origin is sensitive to the fine-tuning

$$
\Delta m_{H_{u}}^{2} \simeq-\frac{3 y_{t}^{2}}{8 \pi^{2}}\left(M_{U_{3}}^{2}+M_{Q_{3}}^{2}+A_{t}^{2}\right) \ln \left(\frac{\Lambda}{m_{\tilde{t}}}\right)
$$

$\mu=100 \mathrm{GeV}, M_{Q_{3}}=M_{U_{3}}$

Split SUSY

spread SUSY 8TeV: GC1N1 + C1N2N1

CMSSM

NUHM

NUHM 8TeV: QGC1N2N1+C1N2N1

Introduction

SModelS

- SModelS is a tool to automatically check the simplified model constraints on a given BSM model.

Fitting Excesses

Excesses

Analysis	$\sqrt{ }$ s	lumi	SR	Exp	Obs	s.d.
ATLAS WW	7	4.6	comb	1219 ± 87	1325	~ 10
CMS WW	7	4.9	comb	1076 ± 62	1134	~ 10
CMS WW	8	5.3	comb	986 ± 60	1111	$\sim 2 \sigma$
ATLAS Higgs WW	8	20.7	WW CR	3110 ± 220	3296	~ 10
ATLAS 1-2 lep + jets	8	20.1	dimuon	1.9 ± 1.8	7	~ 2.50
ATLAS trilepton	8	20.3	SROta01	23 ± 6.2	36	~ 20
			SROta06	6.6 ± 3.2	13	~ 20
			SROta10	16.4 ± 4.7	24	~ 1.50

Analysis	$\sqrt{ }$ s	lumi	SR	Exp	Obs	s.d.
ATLAS 1-2 lep + jets	7	4.6	comb	1219 ± 87	1325	$\sim 1 \sigma$
ATLAS 2lep razor	7	4.9	comb	1076 ± 62	1134	$\sim 1 \sigma$
ATLAS trilepton	8	5.3	comb	986 ± 60	1111	$\sim 2 \sigma$

ϵ_{BG} : estimation is harder

ϵ_{BG} : estimation is harder
 ϵ_{BSM} : estimation is easier

not too sensitive to momentum resolution, fake rates, mistag

use ATLAS/CMS estimation $\longrightarrow \epsilon_{\mathrm{BG}}$: estimation is harder
$\mathrm{DIY} \longrightarrow \epsilon_{\mathrm{BSM}}$: estimation is easier
not too sensitive to momentum resolution, fake rates, mistag

