Covariant techniques in projective and harmonic superspace

Daniel Butter

NIBHEF

> July 25, 2014 SUSY 2014

```
Based on
1408. \(\operatorname{xxxx}(\times 2)\)
1406.6235
JHEP 1211 (2012) 120 [1206.3939]
```


The key people

- Harmonic superspace was largely developed in 1984.

Galperin, Ivanov, Kalitsyn, Ogievetsky, Sokatchev (see monograph [GIOS])

- Projective superspace was developed also in 1984 by efforts of Karlhede, Lindström, Roček
Work in later years included...
Gates, Gonzalez-Rey, Hitchin, Kuzenko, Wiles, von Unge
Supergravity developments based on 5D work of
[Kuzenko, Tartaglino-Mazzucchelli '08]

Motivation: Why study these superspaces?

Matter actions with $\mathcal{N}=2$ SUSY involve

- vector multiplets describing a special Kähler manifold
- hypermultiplets parametrizing a hyperkähler manifold (rigid SUSY) or quaternion-Kähler manifold (local SUSY)
Key distinction:
- Vector multiplets are off-shell but hypermultiplets are on-shell. Some important ramifications of hypers being on-shell:
- Hyperkähler / QK are harder to construct than special Kähler.
- Higher-derivative actions easier for vector multiplets.
- Localization easily applied to vector multiplets (even in SUGRA) but trickier for hypermultiplets.
Harmonic and projective superspace allow off-shell hypermultiplets.

Outline

(1) Review: Hypermultiplets in harmonic and projective superspace
(2) Connecting projective to harmonic superspace
(3) Applications: Sigma models and supergravity

Hypermultiplet superfields and off-shell representations

The free $N=2$ (Fayet-Sohnius) hypermultiplet consists of $f^{i}, \psi_{\alpha}, \bar{\chi}_{\dot{\alpha}}$. SUSY closes on-shell. Its superfield is given by

$$
\begin{array}{r}
q^{i}(\theta, \bar{\theta})=f^{i}+\theta^{i} \psi+\bar{\theta}_{i} \bar{\chi}+(x \text {-derivative terms }) \\
D_{\alpha}^{(i} q^{j)}=\bar{D}_{\dot{\alpha}}^{(i} q^{j)}=0 \quad \Longrightarrow \quad \square q^{i}=0
\end{array}
$$

Idea of harmonic and projective superspace:
Separate the constraint into a kinematic and a dynamical piece by introducing auxiliary manifold with coordinate v^{i+}.
(1) $D_{\alpha}^{+} \mathcal{Q}^{+}=\bar{D}_{\dot{\alpha}}^{+} \mathcal{Q}^{+}=0 \quad$ for $\quad D_{\alpha}^{+}=v_{i}^{+} D_{\alpha}^{i}$
(2) $\mathcal{Q}^{+}=q^{i} v_{i}^{+}$
analyticity condition
equation of motion
idea goes back to Rosly (related to idea of Witten)

Harmonic coordinates on $S^{2} \cong \mathbb{C} P^{1}$

Both harmonic and projective superspace use $S^{2} \cong \mathbb{C} P^{1}$.

- Introduce harmonics v^{i+} and v_{i}^{-}with $v_{i}^{-}=\left(v^{i+}\right)^{*}$ and $v^{i+} v_{i}^{-}=1$.
- Identify $v^{i \pm} \sim e^{ \pm i \psi} v^{i \pm}$.

A useful choice: $v^{i+} \sim \frac{(1, \zeta)}{\sqrt{1+\zeta \bar{\zeta}}}$. ζ describes $\mathbb{C} P^{1} \cong S^{2}$.

North pole
$\zeta=0$ or $v^{i+} \sim(1,0)$

South pole

$$
\zeta=\infty \text { or } v^{i+} \sim(0,1)
$$

Differences between harmonic and projective superspace

The differences between harmonic and projective superspace lie in the dependence on the S^{2}.

Harmonic superspace
Functions are globally-defined

$$
\mathcal{Q}^{+}=q_{i} v^{i+}+q_{i j k} v^{i+} v^{j+} v^{k-}+\cdots
$$

Free EOM: $D^{++} \mathcal{Q}^{+}=0$ where
$D^{++} v^{i+}=0, \quad D^{++} v_{i}^{-}=v_{i}^{+}$,

$$
\Longrightarrow \quad \mathcal{Q}^{+}=q_{i} v^{i+}
$$

Projective superspace

Functions are holomorphic on S^{2}, locally defined near N or S .
e.g. \mathcal{Q}^{+}is holomorphic near N. It is arctic.

$$
\mathcal{Q}^{+}=v^{\underline{1}} \sum_{n=0}^{\infty} q_{n} \zeta^{n}
$$

Free EOM: \mathcal{Q}^{+}is also holomorphic near south pole (antarctic).

$$
\Longrightarrow \quad \mathcal{Q}^{+}=q_{1} v^{1+}+q_{2} v^{2+}
$$

Harmonic vs projective: Comparisons

- Harmonic superspace nicely accommodates gauge and supergravity prepotentials. (Good for quantum calculations.)
- Projective superspace has useful covariant formulations where prepotentials are hidden within covariant derivatives. (Good for derivation of covariant component actions.)

Harmonic vs projective: Comparisons

- Harmonic superspace nicely accommodates gauge and supergravity prepotentials. (Good for quantum calculations.)
- Projective superspace has useful covariant formulations where prepotentials are hidden within covariant derivatives. (Good for derivation of covariant component actions.)

Compare with $4 D N=1$ superspace: chiral multiplet with charge q
ϕ is conventionally chiral

$$
\mathcal{L}=\int \mathrm{d}^{4} \theta \bar{\phi} e^{q V} \phi, \quad \bar{D}_{\dot{\alpha}} \phi=0
$$

Impose Wess-Zumino gauge on V.

$$
\begin{aligned}
\mathcal{L}= & -\partial_{m} \bar{\phi} \partial^{m} \phi-i q A^{m}\left(\bar{\phi} \overleftrightarrow{\partial_{m}} \phi\right) \\
& -q^{2} A^{2} \bar{\phi} \phi+\cdots
\end{aligned}
$$

Supergravity case is similar but even more tricky with prepotentials!

Outline

(1) Review: Hypermultiplets in harmonic and projective superspace
(2) Connecting projective to harmonic superspace

(3) Applications: Sigma models and supergravity

Connecting projective to harmonic superspace

Main issue: they involve the same space ($S^{2} \cong \mathbb{C} P^{1}$) but different fields (globally defined vs. holomorphic)

Two alternative ways of addressing this:
(1) Deform the fields.

Embed projective multiplets into globally defined harmonic multiplets

- holomorphic everywhere except at the poles.
(2) Deform the space. [Jain,Siegel '09; DB '12]

Complexify the S^{2} of harmonic superspace to $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$. Identify projective superspace S^{2} with the first $\mathbb{C} P^{1}$. Second $\mathbb{C} P^{1}$ is additional auxiliary structure.

We will take this approach.
The second method is similar to an approach in twistor theory.
[Newman '86].

How do we complexify S^{2} to $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$?

- Take harmonics u^{i+} and u_{i}^{-}, keep $u^{i+} u_{i}^{-}=1$, but now $u_{i}^{-} \neq\left(u^{i+}\right)^{*}$:

$$
u^{i+}=v^{i+}, \quad u_{i}^{-}=\frac{w_{i}^{-}}{\left(v^{+} w^{-}\right)}, \quad\left(v^{i \pm}, w^{i \pm}\right) \in \mathbb{C} P^{1} \times \mathbb{C} P^{1}
$$

Outline

(1) Review: Hypermultiplets in harmonic and projective superspace
(2) Connecting projective to harmonic superspace
(3) Applications: Sigma models and supergravity

Sigma models: Harmonic vs. projective

Harmonic solution [GIOS]

- Action

$$
\mathscr{L}^{+4}=-\frac{1}{2} \mathcal{P}^{+} \overleftrightarrow{D}^{++} \mathcal{Q}^{+}+\mathcal{H}^{+4}
$$

- Equations of motion

$$
\begin{aligned}
D^{++} \mathcal{Q}^{+} & =\frac{\partial \mathcal{H}^{+4}}{\partial \mathcal{P}^{+}} \\
D^{++} \mathcal{P}^{+} & =-\frac{\partial \mathcal{H}^{+4}}{\partial \mathcal{Q}^{+}}
\end{aligned}
$$

Compare to classical mechanics:

- Action principle:
- Using Hamilton's equations,

Projective solution

[Gates, Kuzenko; Lindström, Roček]

- Action

$$
\mathscr{L}^{++}=\mathcal{F}^{++}\left(\mathcal{Q}_{0}, \mathcal{P}_{1}\right)
$$

- Equations of motion

$$
\begin{array}{lr}
\mathcal{P}_{0}^{+}=\frac{\partial \mathcal{F}^{++}}{\partial \mathcal{Q}_{0}^{+}} & \text {dual arctic } \\
\mathcal{Q}_{1}^{+}=\frac{\partial \mathcal{F}^{++}}{\partial \mathcal{P}_{1}^{+}} & \text {dual antarctic }
\end{array}
$$

Sigma models: Harmonic vs. projective

Harmonic solution [GIOS]

- Action

$$
\mathscr{L}^{+4}=-\frac{1}{2} \mathcal{P}^{+} \overleftrightarrow{D}^{++} \mathcal{Q}^{+}+\mathcal{H}^{+4}
$$

- Equations of motion

$$
\begin{aligned}
D^{++} \mathcal{Q}^{+} & =\frac{\partial \mathcal{H}^{+4}}{\partial \mathcal{P}^{+}} \\
D^{++} \mathcal{P}^{+} & =-\frac{\partial \mathcal{H}^{+4}}{\partial \mathcal{Q}^{+}}
\end{aligned}
$$

Projective solution

[Gates, Kuzenko; Lindström, Roček]

- Action

$$
\mathscr{L}^{++}=\mathcal{F}^{++}\left(\mathcal{Q}_{0}, \mathcal{P}_{1}\right)
$$

- Equations of motion

$$
\begin{array}{lr}
\mathcal{P}_{0}^{+}=\frac{\partial \mathcal{F}^{++}}{\partial \mathcal{Q}_{0}^{+}} \\
\mathcal{Q}_{1}^{+} & =\frac{\partial \mathcal{F}^{++}}{\partial \mathcal{P}_{1}^{+}}
\end{array} \quad \text { dual arctic }
$$

Compare to classical mechanics:

- Action principle: $F=\frac{1}{2}\left(q_{0} p_{0}+q_{1} p_{1}\right)+\int_{t_{0}}^{t_{1}} \mathrm{~d} t\left(-\frac{1}{2} p \stackrel{\mathrm{~d}}{\mathrm{~d} t} q+H\right)$
- Using Hamilton's equations, $F\left(q_{0}, p_{1}\right)$ is a canonical transformation:

$$
p_{0}=\frac{\partial F}{\partial q_{0}}, \quad q_{1}=\frac{\partial F}{\partial p_{1}}
$$

- Projective actions / solutions can be derived from harmonic ones. Unifies two generating schemes for hyperkähler manifolds.

Supergravity: Projective superspace (review)

- Key idea:
[Kuzenko '07]
$S U(2)_{R}$ of superconformal group $\equiv S U(2)$ isometry group of S^{2}
this tells us that we must geometrize the R-symmetry group!
Curved projective superspace: $\mathcal{M}^{4 \mid 8} \times S^{2}$
[Kuzenko, Lindström, Roček, Tartaglino-Mazzucchelli '08] and [DB '14]

$$
E_{\mathcal{M}^{\mathcal{A}}}=\left(\begin{array}{cc}
E_{M}^{A} & \mathcal{V}_{M}{ }^{\underline{a}} \\
0 & \mathcal{V}_{\underline{\underline{m}}} \underline{\underline{a}}
\end{array}\right)
$$

Analogous to the placement of the gravitino in the supervielbein $E_{M}{ }^{A}$

Supergravity: Projective superspace (review)

- Key idea:
[Kuzenko '07]
$S U(2)_{R}$ of superconformal group $\equiv S U(2)$ isometry group of S^{2}
this tells us that we must geometrize the R-symmetry group!
Curved projective superspace: $\mathcal{M}^{4 \mid 8} \times S^{2}$
[Kuzenko, Lindström, Roček, Tartaglino-Mazzucchelli '08] and [DB '14]
$E_{\mathcal{M}^{\mathcal{A}}}=\left(\begin{array}{cc}E_{M^{A}} & \mathcal{V}_{M^{\underline{a}}} \\ 0 & \mathcal{V}_{\underline{m}^{\underline{a}}}\end{array}\right)$ vielbein on $\mathcal{M}^{4 \mid 8}$

Analogous to the placement of the gravitino in the supervielbein E_{M}^{A}

Supergravity: Projective superspace (review)

- Key idea:
[Kuzenko '07]
$S U(2)_{R}$ of superconformal group $\equiv S U(2)$ isometry group of S^{2}
this tells us that we must geometrize the R-symmetry group!
Curved projective superspace: $\mathcal{M}^{4 \mid 8} \times S^{2}$
[Kuzenko, Lindström, Roček, Tartaglino-Mazzucchelli '08] and [DB '14]
$E_{\mathcal{M}^{\mathcal{A}}}=\left(\begin{array}{cc}E_{M^{A}} & \mathcal{V}_{M^{\underline{a}}} \\ 0 & \mathcal{V}_{\underline{m}^{\underline{a}}}\end{array}\right)$ vielbein on $\mathcal{M}^{4 \mid 8}$

Analogous to the placement of the gravitino in the supervielbein E_{M}^{A}

Supergravity: Projective superspace (review)

- Key idea:
[Kuzenko '07]
$S U(2)_{R}$ of superconformal group $\equiv S U(2)$ isometry group of S^{2}
this tells us that we must geometrize the R-symmetry group!
Curved projective superspace: $\mathcal{M}^{4 \mid 8} \times S^{2}$
[Kuzenko, Lindström, Roček, Tartaglino-Mazzucchelli '08] and [DB '14]

$$
E_{\mathcal{M}^{\mathcal{A}}=\left(\begin{array}{cc}
E_{M^{A}} & \mathcal{V}_{M^{\underline{a}}} \\
0 & \mathcal{V}_{\underline{m^{\underline{a}}}}
\end{array}\right) \text { vielbein on } \mathcal{M}^{4 \mid 8}} S U(2)_{R} \text { connection on } \mathcal{M}^{4 \mid 8}
$$

Analogous to the placement of the gravitino in the supervielbein $E_{M}{ }^{A}$

Supergravity: Harmonic superspace

- Follow the flat case and embed curved projective superspace $\left(\mathcal{M}^{4 \mid 8} \times S^{2}\right)$ into curved harmonic $\left(\mathcal{M}^{4 \mid 8} \times \mathbb{C} P^{1} \times \mathbb{C} P^{1}\right)$.
- Complication: "extra" $\mathbb{C} P^{1}$. Solution: attach "flat" $S U(2)$ group to sugra.

$$
E_{\mathcal{M}^{\mathcal{A}}}=\left(\begin{array}{ccc}
E_{M}{ }^{A} & \mathcal{V}_{M} \underline{a} & 0 \\
0 & \mathcal{V}_{\underline{m}} \underline{\underline{a}} & 0 \\
0 & 0 & \mathcal{W}_{\underline{m}^{\underline{a}}}
\end{array}\right)
$$

- These ideas were briefly discussed in [GIOS].

Supergravity: Harmonic superspace

- Follow the flat case and embed curved projective superspace $\left(\mathcal{M}^{4 \mid 8} \times S^{2}\right)$ into curved harmonic $\left(\mathcal{M}^{4 \mid 8} \times \mathbb{C} P^{1} \times \mathbb{C} P^{1}\right)$.
- Complication: "extra" $\mathbb{C} P^{1}$. Solution: attach "flat" $S U(2)$ group to sugra.

$$
E_{\mathcal{M}}{ }^{\mathcal{A}}=\left(\begin{array}{clc}
E_{M}^{A} & \mathcal{V}_{M} \underline{a} & 0 \\
0 & \mathcal{V}_{\underline{m}}^{\underline{a}} \longleftarrow & 0 \\
0 & 0 & \mathcal{W}_{\underline{\dot{m}^{\underline{a}}}}
\end{array}\right) \text { vielbein, spin on 1st } \mathbb{C} P^{1}
$$

- These ideas were briefly discussed in [GIOS].

Supergravity: Harmonic superspace

- Follow the flat case and embed curved projective superspace $\left(\mathcal{M}^{4 \mid 8} \times S^{2}\right)$ into curved harmonic $\left(\mathcal{M}^{4 \mid 8} \times \mathbb{C} P^{1} \times \mathbb{C} P^{1}\right)$.
- Complication: "extra" $\mathbb{C} P^{1}$. Solution: attach "flat" $S U(2)$ group to sugra.

$$
E_{\mathcal{M}} \mathcal{A}=\left(\begin{array}{ccc}
E_{M}^{A} & \mathcal{V}_{M} \underline{a} & 0 \\
0 & \mathcal{V}_{\underline{m}}^{\underline{a}} & 0
\end{array}\right) \quad \begin{gathered}
\\
0
\end{gathered}
$$

- These ideas were briefly discussed in [GIOS].

Supergravity: Harmonic superspace

- Follow the flat case and embed curved projective superspace $\left(\mathcal{M}^{4 \mid 8} \times S^{2}\right)$ into curved harmonic $\left(\mathcal{M}^{4 \mid 8} \times \mathbb{C} P^{1} \times \mathbb{C} P^{1}\right)$.
- Complication: "extra" $\mathbb{C} P^{1}$. Solution: attach "flat" $S U(2)$ group to sugra.

$$
E_{\mathcal{M}}{ }^{\mathcal{A}}=\left(\begin{array}{ccc|c}
E_{M}^{A} & \mathcal{V}_{M} \underline{a} & 0 & \\
0 & \mathcal{V}_{\underline{m}} \underline{a} & 0 & \\
0 & 0 & \mathcal{W}_{\underline{m}^{\underline{a}}} & \text { vielbein, spin on 1st } \mathbb{C} P_{R} \\
\text { vielbein, spin on 2nd } \mathbb{C} P^{1}
\end{array}\right.
$$

- These ideas were briefly discussed in [GIOS].

Take the framework for a test drive

- Projective and harmonic descriptions of sigma model coupled to conformal supergravity
$S=-\frac{1}{2 \pi} \oint_{\mathcal{C}} v_{i}^{+} \mathrm{d} v^{i+} \int \mathrm{d}^{4} x \mathrm{~d}^{4} \theta^{+} \mathcal{E} \mathcal{F}^{++}$,
$S=\frac{i}{2 \pi} \oint_{\mathcal{S}} v_{i}^{+} \mathrm{d} v^{i+} \wedge w_{j}^{-} \mathrm{d} w^{j-} \int \mathrm{d}^{4} x \mathrm{~d}^{4} \theta^{+} \mathcal{E}\left(-\frac{1}{2} \mathcal{P}^{+} \overleftrightarrow{D^{(0,2)}} \mathcal{Q}^{+}+\mathcal{H}^{(2,2)}\right)$
- Component reduction gives sigma model (a hyperkähler cone) coupled to conformal supergravity.
- Results agree with each other and with known component results of [de Wit, Kleijn, Vandoren '99].

Conclusion and open questions

- Harmonic and projective superspaces are not intrinsically different formulations of off-shell $\mathcal{N}=2$ superspace but are rather complementary.
- Understanding projective superspace tells us how to introduce covariant formulation of harmonic superspace coupled to conformal supergravity.
- Covariant formulation readily admits higher-derivative actions. Can we construct these with hypermultiplets using either projective superspace or harmonic superspace? see e.g. [DB, Kuzenko '10]
- Can we learn (more) about prepotentials in projective superspace using harmonic? Advances in understanding gauge prepotential already due to [Jain,Siegel]. What about supergravity?
stay tuned...

