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The key people

Harmonic superspace was largely developed in 1984.
Galperin, Ivanov, Kalitsyn, Ogievetsky, Sokatchev

(see monograph [GIOS])
Projective superspace was developed also in 1984 by efforts of

Karlhede, Lindström, Roček
Work in later years included...

Gates, Gonzalez-Rey, Hitchin, Kuzenko, Wiles, von Unge

Supergravity developments based on 5D work of
[Kuzenko, Tartaglino-Mazzucchelli ’08]
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Motivation: Why study these superspaces?

Matter actions with N = 2 SUSY involve
vector multiplets describing a special Kähler manifold
hypermultiplets parametrizing a hyperkähler manifold (rigid SUSY)
or quaternion-Kähler manifold (local SUSY)

Key distinction:
Vector multiplets are off-shell but hypermultiplets are on-shell.

Some important ramifications of hypers being on-shell:
Hyperkähler / QK are harder to construct than special Kähler.
Higher-derivative actions easier for vector multiplets.
Localization easily applied to vector multiplets (even in SUGRA)
but trickier for hypermultiplets.

Harmonic and projective superspace allow off-shell hypermultiplets.
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Outline

1 Review: Hypermultiplets in harmonic and projective superspace

2 Connecting projective to harmonic superspace

3 Applications: Sigma models and supergravity
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Hypermultiplet superfields and off-shell representations

The free N = 2 (Fayet-Sohnius) hypermultiplet consists of f i, ψα, χ̄α̇.
SUSY closes on-shell. Its superfield is given by

qi(θ, θ̄) = f i + θiψ + θ̄iχ̄+ (x-derivative terms)

D(i
α q

j) = D̄
(i
α̇ q

j) = 0 =⇒ �qi = 0

Idea of harmonic and projective superspace:
Separate the constraint into a kinematic and a dynamical piece
by introducing auxiliary manifold with coordinate vi+.

1 D+
αQ+ = D̄+

α̇Q
+ = 0 for D+

α = v+
i D

i
α analyticity condition

2 Q+ = qiv+
i equation of motion

idea goes back to Rosly
(related to idea of Witten)
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Harmonic coordinates on S2 ∼= CP 1

Both harmonic and projective superspace use S2 ∼= CP 1.
Introduce harmonics vi+ and v−i with v−i = (vi+)∗ and vi+v−i = 1.
Identify vi± ∼ e±iψvi±.
A useful choice: vi+ ∼ (1, ζ)√

1 + ζζ̄
. ζ describes CP 1 ∼= S2.

North pole
ζ = 0 or vi+ ∼ (1, 0)

South pole
ζ =∞ or vi+ ∼ (0, 1)
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Differences between harmonic and projective superspace
The differences between harmonic and projective superspace lie in the
dependence on the S2.

Harmonic superspace

Functions are globally-defined

Q+ = qiv
i+ + qijkv

i+vj+vk− + · · ·

Free EOM: D++Q+ = 0 where
D++vi+ = 0 , D++v−i = v+

i ,

=⇒ Q+ = qiv
i+

Projective superspace

Functions are holomorphic on S2,
locally defined near N or S.
e.g. Q+ is holomorphic near N .
It is arctic.

Q+ = v1+
∞∑
n=0

qnζ
n

Free EOM: Q+ is also holomorphic
near south pole (antarctic).

=⇒ Q+ = q1v
1+ + q2v

2+
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Harmonic vs projective: Comparisons

Harmonic superspace nicely accommodates gauge and supergravity
prepotentials. (Good for quantum calculations.)
Projective superspace has useful covariant formulations where
prepotentials are hidden within covariant derivatives. (Good for
derivation of covariant component actions.)

Compare with 4D N = 1 superspace: chiral multiplet with charge q
φ is conventionally chiral

L =
∫

d4θ φ̄ eqV φ , D̄α̇φ = 0

Impose Wess-Zumino gauge on V .

L = −∂mφ̄∂mφ− iqAm(φ̄
←→
∂mφ)

− q2A2φ̄φ+ · · ·

Φ is covariantly chiral

L =
∫

d4θΦ†Φ , D̄α̇Φ = 0

No need for any gauge choice.

L = −Dmφ̄Dmφ+ · · ·

Supergravity case is similar but even more tricky with prepotentials!
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Connecting projective to harmonic superspace

Main issue: they involve the same space (S2 ∼= CP 1) but
different fields (globally defined vs. holomorphic)

Two alternative ways of addressing this:
1 Deform the fields. [Kuzenko ’98]

Embed projective multiplets into globally defined harmonic multiplets
– holomorphic everywhere except at the poles.

2 Deform the space. [Jain,Siegel ’09; DB ’12]
Complexify the S2 of harmonic superspace to CP 1 × CP 1.
Identify projective superspace S2 with the first CP 1.
Second CP 1 is additional auxiliary structure.

We will take this approach.
The second method is similar to an approach in twistor theory.

[Newman ’86].
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How do we complexify S2 to CP 1 × CP 1?

Take harmonics ui+ and u−i , keep ui+u−i = 1, but now u−i 6= (ui+)∗:

ui+ = vi+ , u−i = w−i
(v+w−) , (vi±, wi±) ∈ CP 1 × CP 1

Complex harmonic superspace
Q+(v+, w−)

Harmonic superspace
Q+(v+, v−)

Projective superspace
arctic: Q+

0 = Q+|w−=(1,0)
antarctic: Q+

1 = Q+|w−=(0,1)

v
i+

=
w
i+

w −
i =

(1, 0)
or (0, 1)
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Sigma models: Harmonic vs. projective [DB ’12]
Harmonic solution [GIOS]

Action
L +4 = −1

2P
+←→D ++Q+ +H+4

Equations of motion

D++Q+ = ∂H+4

∂P+

D++P+ = −∂H
+4

∂Q+

Projective solution
[Gates, Kuzenko; Lindström, Roček]

Action
L ++ = F++(Q0,P1)

Equations of motion

P+
0 = ∂F++

∂Q+
0

dual arctic

Q+
1 = ∂F++

∂P+
1

dual antarctic

Compare to classical mechanics:
Action principle: F = 1

2(q0p0 + q1p1) +
∫ t1

t0

dt
(
−1

2p
←→d
dt q +H

)
Using Hamilton’s equations, F (q0, p1) is a canonical transformation:

p0 = ∂F

∂q0
, q1 = ∂F

∂p1
Projective actions / solutions can be derived from harmonic ones.
Unifies two generating schemes for hyperkähler manifolds. [DB ’12]
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Supergravity: Projective superspace (review)

Key idea: [Kuzenko ’07]

SU(2)R of superconformal group ≡ SU(2) isometry group of S2

this tells us that we must geometrize the R-symmetry group!

Curved projective superspace: M4|8 × S2

[Kuzenko, Lindström, Roček, Tartaglino-Mazzucchelli ’08] and [DB ’14]

EM
A =

 EM
A VMa

0 Vma



Analogous to the placement of the gravitino in the supervielbein EM
A
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Supergravity: Harmonic superspace [DB 1408.xxxx]

Follow the flat case and embed curved projective superspace (M4|8 × S2)
into curved harmonic (M4|8 × CP 1 × CP 1).

Complication: “extra” CP 1. Solution: attach “flat” SU(2) group to sugra.

EM
A =


EM

A VM
a 0

0 Vm
a 0

0 0 Wṁ
ȧ



These ideas were briefly discussed in [GIOS].
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ȧ


SU(2)R connection on M4|8

vielbein, spin on 1st CP 1

vielbein, spin on 2nd CP 1

These ideas were briefly discussed in [GIOS].

Daniel Butter Covariant projective / harmonic superspace SUSY 2014 15 / 17



Take the framework for a test drive

Projective and harmonic descriptions of sigma model coupled to conformal
supergravity

S = − 1
2π

∮
C
v+

i dvi+
∫

d4xd4θ+ EF++ ,

S = i

2π

∮
S
v+

i dvi+ ∧ w−j dwj−
∫

d4xd4θ+ E
(
− 1

2P
+←→D (0,2)Q+ +H(2,2)

)

Component reduction gives sigma model (a hyperkähler cone) coupled to
conformal supergravity.

Results agree with each other and with known component results of [de Wit,
Kleijn, Vandoren ’99].
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Conclusion and open questions

Harmonic and projective superspaces are not intrinsically different
formulations of off-shell N = 2 superspace but are rather complementary.

Understanding projective superspace tells us how to introduce covariant
formulation of harmonic superspace coupled to conformal supergravity.

Covariant formulation readily admits higher-derivative actions. Can we
construct these with hypermultiplets using either projective superspace or
harmonic superspace? see e.g. [DB, Kuzenko ’10]

Can we learn (more) about prepotentials in projective superspace using
harmonic? Advances in understanding gauge prepotential already due to
[Jain,Siegel]. What about supergravity?

stay tuned...

Daniel Butter Covariant projective / harmonic superspace SUSY 2014 17 / 17


	Review: Hypermultiplets in harmonic and projective superspace
	Connecting projective to harmonic superspace
	Applications: Sigma models and supergravity

