# Latest result and future prospect of MEG

Ryu Sawada on behalf of the MEG and MEG II collaboration ICEPP, the University of Tokyo

> SUSY 2014 Manchester, 25 July 2014





CLFV Forbidden in SM

● Little SM background through  $\nu$  oscillation : Br( $\mu^+ \rightarrow e^+ \gamma$ ) < 10<sup>-45</sup>

- So far, no CLFV signal has been observed.
- Many new physics beyond SM (e.g. SUSY, Extra dimensions etc.) predict observable Br (10<sup>-14</sup> — 10<sup>-11</sup>)

Discovery will be an unambiguous evidence of new physics.

Observed 3.5σ discrepancy of the anomalous magnetic moment of the muon could be due to new physics

• Strong correlation with  $\mu^+ \rightarrow e^+ \gamma$ 

Complementary search of new physics,

LHC Run 2

• New experiments to search for other muon channels ( $\mu$ -e conversion,  $\mu \rightarrow eee$ )

2

# Signal and background

#### Signal

 $\mu^+$  decay at rest 52.8MeV (half of M<sub>µ</sub>) (E<sub>γ</sub>,E<sub>e</sub>) Back-to-back ( $\theta_{e\gamma}, \varphi_{e\gamma}$ ) Timing coincidence (T<sub>eγ</sub>)



#### Dominant BG

### Accidental background

Michel decay  $e^+$  + random  $\gamma$ 

Random timing, angle, E < 52.8MeV



### **Radiative muon decay**

 $\mu^+ \rightarrow e^+ \nu \nu \gamma$ 

Timing coincident, not back-to back, E <52.8MeV

Ryu Sawada

21–26 July, Manchester, England

SUSY2014

3

# MEG Experiment iment

Searching for the cLFV rare decay  $a^+ \rightarrow e^+ \gamma$  with the highest sensitivity.



### Latest result

**Confidence level** 





arXiv:1303.0754 [hep-ex] Phys. Rev. Lett. 110, 201801 (2013)

**Br(** $\mu^+ \rightarrow e^+ \gamma$ **)** 

| Sensitivity<br>Roct fit | 7.7×10 <sup>10</sup>         |
|-------------------------|------------------------------|
| Uppler limit @ 90% C.L. | <b>5.7×10</b> <sup>-13</sup> |

### Systematic uncertainties (in total 1% in UL) relative angle offsets

5

**SUSY2014** 

correlations in *e*<sup>+</sup> observables

#### Ryu Sawada

#### 21–26 July, Manchester, England

# New Physics constraints



Ryu Sawada

#### 21–26 July, Manchester, England

### New data

2009-2011data sensitivity 7.7×10<sup>-13</sup>

### **Observed limits and sensitivity**



### Status and future

### Data process status

Calibration of new data is finished.

### Further improvements and crosschecks.

- New analysis for identifying gamma rays from positron annihilation-in-flight.
  - ~15% improvement of sensitivity is expected.
- Re-measuring magnetic fields with a new device.



### Final analysis of the full dataset by the end of 2014

# MEG II — Upgrade —

# MEG II

Major upgrade of the experiment for 10 times higher sensitivity.

Upgrade concept

Double beam intensity

- Double detector efficiency
- Factor ~30 background suppression
  - Improved detector resolutions
  - Possibility to add a new detector to identify background events

Start the new experiment from 2016

#### **LXe Calorimeter**

Higher resolutions and efficiency with higher granularity.

**Target** Thinner target Active target option

> Muon Beam More than twice intense beam

#### **Drift chamber**

Higher tracking performance with long single tracking volume **Tin** 

### Timing Counter

Higher time resolution with highly segmented detector

#### **Radiative Decay Counter**

Identify gammas from muon radiative-decays (optional)

#### Ryu Sawada

#### 21–26 July, Manchester, England

Trining and a second

# Calorimeter upgrade concept



#### **Ryu Sawada**

21–26 July, Manchester, England

12

# Cylindrical drift chamber

### Gas volume

- Lower Z gas mixture (85% He + 15% iso-butane)
- Unique 2m-long chamber-gas volume, improved transparency to timing-counters.
  - Double the detection efficiency
  - Improve the Time-Of-Flight error down to 10 psec
- Wire configuration
  - Stereo-angle configuration for longitudinal position
  - Single hit spacial resolution of 120 μm
  - Finer granularity (7 mm cell) and higher multiplicity (15 → 60 hits per track)







Many small plastic counters.

Six SiPMs are directly attached on both sides for high light-collection efficiency.

●SiPMs on the same side are attached in series to read with a single channel.

 $\blacksquare$  In average, ~8 counters hit by a signal positron.

**30 psec** time resolution by averaging the hit-times

14

# Electronics and Trigger

## Much more number of channel of waveform digitizer

3U Eurocard crate (instead of VME)

- We will use many SiPMs, for LXe, TC and optional detectors.
  - Newly developed WaveDREAM board contains HV, amplifier and waveform digitizers for trigger and offline analysis.

### Data transmission

Serialization protocol with GB capability (possible with on-board FPGAs)





# Detector R&D highlights

### LXe calorimeter

New type of VUV-sensitive SiPM with 15% PDE for LXe light was developed.

### Drift chamber

- Good (~110 µm) spacial resolution for cosmic-rays was confirmed with a prototype chamber.
- Long term stability against aging was confirmed to be ok.

### Timing counter

Good resolution (30 psec) was measured in a electron beam test

### Photo sensors for LXe



(not for LXe)

Normal MPPC (3×3 mm<sup>2</sup>)

#### **Result of TC beam test**



**SUSY2014** 

21–26 July, Manchester, England

# MEG II performance

| Resolution | (Gaussian | $\sigma$ ) and | efficiencies | for | MEG | upgrade |
|------------|-----------|----------------|--------------|-----|-----|---------|
|------------|-----------|----------------|--------------|-----|-----|---------|

| PDF parameters                          | Present MEG | Upgrade scenario |
|-----------------------------------------|-------------|------------------|
| e <sup>+</sup> energy (keV)             | 306 (core)  | 130              |
| $e^+ \theta$ (mrad)                     | 9.4         | 5.3              |
| $e^+ \phi$ (mrad)                       | 8.7         | 3.7              |
| $e^+$ vertex (mm) $Z/Y(core)$           | 2.4 / 1.2   | 1.6 / 0.7        |
| $\gamma$ energy (%) (w <2 cm)/(w >2 cm) | 2.4 / 1.7   | 1.1 / 1.0        |
| $\gamma$ position (mm) $u/v/w$          | 5 / 5 / 6   | 2.6 / 2.2 / 5    |
| $\gamma$ -e <sup>+</sup> timing (ps)    | 122         | 84               |
| Efficiency (%)                          |             |                  |
| trigger                                 | ≈ 99        | ≈ 99             |
| $\gamma$                                | 63          | 69               |
| e <sup>+</sup>                          | 40          | 88               |

**Ryu Sawada** 

21–26 July, Manchester, England

17

# MEG II sensitivity

#### **Statistics**



### Sensitivity prospect



**SUSY2014** 

#### Ryu Sawada

21–26 July, Manchester, England

# Summary

- For the final result of phase I, MEG will double the data
  - Further improvement of analysis is expected.
  - Trying to finish analysis in this year.

### Br ( $\mu^+ \rightarrow e^+ \gamma$ ) sensitivity × 10<sup>13</sup>



19

- MEG II is planned for reaching 10 times higher sensitivity
  - Starting new measurements from 2016, three years data-taking.
  - Design sensitivity of  $5 \times 10^{-14}$  on  $Br(\mu^+ \rightarrow e^+ \gamma)$

# Backup

## AIF Analysis



# **VUV-sensitive** MPPC

We developed **VUV-sensitive MPPC** with Hamamatsu *model : S10943-3186(X)* 

#### • Sensitive to LXe scintillation light, $\lambda$ ~175 nm

- No protection layer, thinner insensitive layer
- Optimized optical property of the surface
- Large sensitive area, 12×12 mm<sup>2</sup>
- 50 µm pixel pitch : ~47–56k pixels in each package
- Metal quench resister suitable for the low temperature use
- Four segments in each package
  - Possible to read each segment separately or to connect them outside of the package
- Thin quartz window for protection
  - Open space between the window and MPPCs to allow LXe enter the space
- Different gaps (0.5, 1 or 1.5 mm) to test possibility of discharge due to some conductive dusts floating in LXe.

### The first batch of the product delivered in this March



22

**SUSY2014** 

#### Ryu Sawada

#### 21–26 July, Manchester, England