

Searching for Sterile Neutrinos at the MINOS Experiment

Andy Blake, Cambridge University (on behalf of the MINOS and MINOS+ collaborations)

SUSY 2014 Conference, Manchester University Tuesday July 22nd, 2014.

Overview

- Oscillations into light sterile neutrinos may explain anomalies in short-baseline, reactor and radiochemical experiments.
- However, the evidence remains inconclusive due to tension between appearance and disappearance measurements
- The MINOS long-baseline experiment offers a complementary probe of sterile neutrino mixing using v_{μ} disappearance.

Soudan mine, Minnesota, USA

> Lake Superior

735 km baseline Lake Huron

an address of

Lake Ontario

Lake Michigan

Lake Eric

The MINOS Experiment

Fermi Laboratory, Chicago, USA

The NuMI Accelerator Beam

- Operating at Fermilab since 2005.
- Data in both ν_{μ} and anti- ν_{μ} modes.
- Analysis described in this talk is based on exposure of 10.56×10^{20} protons on target (POT) using "low energy" v_{μ} mode.
- Beam has now begun operating in "medium-energy" $\nu_{\!\mu}$ mode.

The MINOS Detectors

Near Detector

(1 kton, 1km from source)

Far Detector

(5.4 kton, 735 km from source)

- Functionally similar detectors (steel/scintillator, magnetic field).
- Measure flavour composition and energy spectrum in each detector. \diamond Can separate v_{μ} CC, anti- v_{μ} CC, v_{e} CC, and NC interactions.
- Measure oscillations by combining information from two detectors.

Neutrino Oscillations

• MINOS has published measurements of standard oscillation parameters Δm_{32}^2 , θ_{23} , θ_{13} :

 ν_{μ} disappearance (PRL 110, 251801, 2013)

 $\nu_{\mu} \rightarrow \nu_{e}$ appearance (PRL 110, 171801, 2013)

Combined analysis (PRL 112, 191801, 2014)

Andy Blake, Cambridge University

MINOS Sterile Neutrinos, Slide 6

Sterile Neutrinos

- The MINOS disappearance data have now been analysed using 3 + 1 model of sterile neutrinos:
 - \diamond 3 active flavours (v_e, v_{\mu}, v_{\tau}).
 - \diamond Add 1 sterile flavour (v_s) and 1 extra mass state (v₄).
 - \Rightarrow 4 × 4 neutrino mixing matrix.

Neutrino mixing parameters:

Standard 3-flavour parameters:

 Δm_{32}^2 , Δm_{21}^2

 $\diamond \ \theta_{12}, \ \theta_{23}, \ \theta_{13}, \ \delta_{13}$

Additional 4-flavour parameters:

 Δm^{2}_{43}

Sterile Neutrino Signatures

• Main sterile neutrino signatures in MINOS:

- $\diamondsuit v_{\mu}$ CC spectrum: search for additional oscillations due to presence of third mass splitting $\Delta m^2_{_{43}}$.
- ♦ NC spectrum: search for deficit caused by $\nu_{\mu} \rightarrow \nu_{s}$ disappearance, since NC interaction couples to active and not sterile flavours.

• Mixing parameters and main constraints: [standard, sterile]

$\Delta m_{32}^2, \theta_{23}$ $\Delta m_{43}^2, \theta_{24}$	$\left. \right\}$ MINOS v_{μ} disappearance (v_{μ} CC spectrum)
θ_{34}	MINOS $v_{\mu} \rightarrow v_{s}$ disappearance (NC spectrum)
θ_{14}	External reactor data (Bugey)
$sin^2\theta_{13} = 0.024$	
$\Delta m_{21}^2 = 7.59 \times 10^{-5} eV^2$	Fix parameters (external data)
$sin^{2}\theta_{12} = 0.32$	ノ ノ
$\delta_{13}, \delta_{14}, \delta_{24} = 0$	Fix to zero (little sensitivity)

Sterile Neutrino Signatures

• Sterile neutrino oscillations can occur in both MINOS detectors.

♦ Small Δm²₄₃ (>Δm²₃₂) (10⁻³ – 10⁻¹ eV²)

Far Detector: additional oscillations above 3-flavour oscillation maximum Near Detector: no effect

♦ Medium Δm²₄₃ (10⁻¹ – 1 eV²)

Far Detector: oscillations become rapid and average out, causing a constant depletion ('counting experiment'). Near Detector: no effect

♦ Large $\Delta m_{43}^2 (1 - 10^2 \text{ eV}^2)$

Far Detector: constant depletion.

Near Detector: oscillations.

MINOS Sterile Neutrinos, Slide 9

Far Detector CC and NC Spectra

- Select CC and NC events based on topology.
- Far Detector neutrinos:

 \diamond 2721 v_µ CC events

♦ 1221 NC events

(Right plots show comparisons with three-flavour predictions).

• Focus on NC event rates:

0-200 GeV: $R = 1.049 \pm 0.076$ 0-3 GeV: $R = 1.093 \pm 0.097$

• No evidence for NC deficit.

Oscillation Analysis

• Fit the observed FD/ND ratios.

Data samples:

Use both CC and NC spectra in this analysis [shown right].

Oscillation parameters:

♦ Fit $|\Delta m_{43}^2|$, $|\Delta m_{32}^2|$, θ_{23} , θ_{24} , θ_{34} . (fix all other parameters).

Systematic parameters:

- ♦ Incorporate systematics into analysis via covariance matrix.
- Apply an additional constraint on the overall ND event rate.

Confidence limits:

♦ Use Feldman-Cousins procedure to correct likelihood surfaces.

Systematic Uncertainties

26 systematic uncertainties:

♦ Hadron production, beam optics, cross-sections, detector effects.

Incorporate into χ² function:

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} (o_i - e_i)^T [V^{-1}]_{ij} (o_j - e_j)$$

Observed events in bin i o_i :

MINOS Preliminary

 10^{2}

10

10

10⁻²

 Δm^2_{43} / eV²

Covariance matrix Predicted events in bin i e_i :

0.2

 $\sin^2(2\theta_{24})$

v., running

Statistics

IINOS Preliminary

Andy Blake, Cambridge University

0.1

MINOS v_{μ} **Disappearance Limits**

• MINOS confidence limits on Δm_{43}^2 cover four orders of magnitude.

• Strongest constraint on $\nu_{\mu} \rightarrow \! \nu_s$ disappearance for $\Delta m^2_{_{43}}$ < 1 eV².

Currently analysing 3.4×10^{20} POT data collected in antineutrino mode.

Comparison with v_e Appearance

- Combine v_{μ} disappearance results from MINOS with v_e disappearance from Bugey reactor experiment.
 - ♦ MINOS: 90% C.L. on θ_{24}
 - ♦ Bugey: 90% C.L. on θ_{14}^*
 - ♦ Construct combined limit on $sin^{2}2\theta_{\mu e} = sin^{2}2\theta_{14} sin^{2}\theta_{24}.$
- * Bugey limits computed by Patrick Huber using GLoBES 2012 and new reactor fluxes.
- <u>Right</u>: comparison of combined limits from MINOS & Bugey with appearance results from MiniBooNE (neutrino-mode), LSND, ICARUS and OPERA.
- The MINOS data increase tension between sterile neutrino results for $\Delta m_{43}^2 < 1 \text{ eV}^2$.

First Results from MINOS+

• The MINOS+ experiment began operating in September 2013

- ♦ Operate the MINOS detectors in the upgraded NuMI beam.
- A Higher-energy beam spectrum, with increased beam power.
- Wide-band spectrum enables precision measurements of oscillation probability curves.
 - All Measure standard oscillations with increased precision.
 - Continue searching for new physics e.g. sterile neutrinos.

• First results released last month, based on 1.7×10²⁰ POT exposure.

<u>Above</u>: combined spectrum from MINOS & MINOS+.

Enables precision measurement of ν_{μ} survival probability curve.

Future Prospects for MINOS+

Projected MINOS+ sensitivity by 2016 compared to short-baseline experiments.

Projected MINOS+ sensitivity from 1 year of antineutrino running.

• Also investigating MINOS+ sensitivity to anomalous v_e appearance above energy of $v_{\mu} \rightarrow v_e$ maximum at 735 km.

Summary

- MINOS long-baseline experiment has completed a search for sterile neutrinos by measuring v_u disappearance.
 - \diamond No evidence for sterile neutrino oscillations in v_u mode.
 - ♦ Confidence limits span four orders of magnitude in Δm_{43}^2 . Provides strongest constraints on $v_{\mu} \rightarrow v_s$ disappearance for $\Delta m_{43}^2 < 1 \text{ eV}^2$.

 \diamond Currently analysing MINOS data collected in anti-v_{\mu} mode.

 Combination of MINOS and Bugey reactor data yields strong confidence limits on sterile neutrino mixing.
♦ Increases tension in sterile neutrino data for Δm²₄₃ < 1 eV².

• The MINOS+ experiment offers improved sensitivity to sterile neutrino mixing.

- ♦ MINOS+ has released its first spectrum and sensitivities.
- \diamond As well as providing high-statistics ν_{μ} disappearance data, also investigating sensitivity to anomalous ν_{e} appearance.

Backup

Oscillation Analysis

Far/Near Ratio

• The oscillation analysis is based on the observed Far/Near ratio, binned as a function of reconstructed energy:

(Calculate separate F/N ratios for CC and NC events).

Advantages of fitting F/N ratio:

- ♦ Enables oscillations from either detector to be incorporated into fit.
- ♦ Exploits approximate cancellation of systematic uncertainties in ratio.

Oscillation Fit

• The oscillation fit uses the following chi-squared statistic:

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} (o_i - e_i)^T [V^{-1}]_{ij} (o_j - e_j)$$

 o_i : Observed events in bin i

 e_i : Predicted events in bin i

V: Covariance matrix

- The covariance matrix V combines both the statistical and systematic uncertainties [see next slide].
- ♦ An additional penalty term, $(O_{ND}-E_{ND})^2/\sigma_{ND}^2$, is appended to the χ^2 function, where O_{ND} (E_{ND}) is the observed (predicted) total ND rate, and σ_{ND} is the uncertainty on E_{ND} (σ_{ND} =50%).
- ♦ The binning scheme is chosen such that $E_{ND} > 15$ events in every bin (for the case of three-flavour oscillations).
- This chi-squared statistic is minimised as a function of the five oscillation parameters Δm_{43}^2 , Δm_{32}^2 , θ_{23} , θ_{24} , θ_{34} .

Covariance Matrix

Covariance matrix is given by: V

$$\mathbf{Y} = \underbrace{\begin{pmatrix} \sigma_{MC_1}^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{MC_N}^2 \end{pmatrix}}_{\text{stats}} + \underbrace{\sum_{i=1}^N \mathbf{M}_i}_{\text{systematics}}$$

- ♦ The two terms in the sum represent the total statistical and systematic uncertainty in the predicted F/N ratio.
- The second term is generated by calculating the bin-to-bin covariances for each systematic effect, and then summing over all the systematics.
- \diamond The bin-to-bin covariances are calculated using uncertainty envelopes in the F/N ratio, which are obtained by varying the Near and Far simulations according to the $\pm 1\sigma$ uncertainties.

Systematics

- Beam Systematics:
- ♦ Hadroproduction♦ Beam optics
- Detector Effects:
- ♦ Fiducial Volumes
- ♦ Acceptances
- ♦ Event Selection
- ♦ Energy Scales
- ♦ Backgrounds

Cross-sections:

- ♦ Overall cross-section
- ♦ Resonance-DIS transition
- ♦ Resonance axial mass
- ♦ CC QE axial mass

Comparison with v_e Appearance

• By applying unitarity constraints, can combine experimental results on ν_{μ} disappearance (MINOS) and ν_{e} disappearance (reactor data) to place constraints on MiniBooNE and LSND appearance signal.

Combination with Bugey

Bugey likelihood surface computed using GLoBES 2012 and new reactor fluxes

 Δm^2 vs sin²2 θ_{14}

 Δm^2 vs sin²2 θ_{24}

Combination with Bugey

- The Bugey χ^2 surface is a function of Δm^2 and $\sin^2 2\theta_{14}$.
- The MINOS χ^2 surface is a function of Δm^2 and $\sin^2 2\theta_{24}$. (corrected using FC procedure).
- Can calculate a combined surface in Δm^2 vs sin²2 $\theta_{\mu e}$ = sin²2 θ_{14} sin² θ_{24} .

Method:

- ♦ For a given Δm^2 , consider all combinations of MINOS and Bugey points and calculate sin²2θ_{µe} and summed χ^2 for each combination.
- ♦ Each value of $\sin^2 2\theta_{\mu e}$ can occur at different $\sin^2 2\theta_{14}$ and $\sin^2 2\theta_{24}$, so the summed χ^2 values are not a unique function of $\sin^2 2\theta_{\mu e}$.
- ♦ Combined limit is taken to be the largest value of $\sin^2 2\theta_{\mu e}$ within the specified confidence interval (e.g. $\Delta \chi^2 < 4.61$).

Comparison with v_e Appearance

Comparison with v_e Appearance

Future Prospects: MINOS+

Potential improvements:

Improved systematic uncertainties, improved fitting techniques, inclusion of reactor data from other experiments.

Production and Detection of Neutrinos

• Direct protons onto 50g segmented graphite target.

- produces an intense flux of secondary pions and kaons.

• Focus $\pi + / \kappa +$ into tight beam using magnetic focusing.

- requires two 200kA parabolic electromagnets (act as lenses).
- Direct π^+/κ^+ into 675m evacuated decay pipe.
 - need to point the beam 3 degrees into earth to reach Soudan!
 - π^+/κ^+ decay in pipe to produce μ^+/ν_{μ} (and ~1% e⁺/ ν_{e}).

• Absorb μ in 200m rock to leave pure neutrino beam.

– produce ~ 1 neutrino for each proton on target.

The NuMI Beam

The MINOS Detectors

Near Detector

1 kt mass 1 km from target 282 steel planes 153 scintillator planes 100m underground

Functionally Identical Detectors!

- Both are steel/scintillator tracking detectors.
- Magnetized steel (B ~1.3T).
 - GPS synchronization.

Far Detector

5.4 kt mass 735 km from target 486 steel planes 484 scintillator planes 700m underground

Neutrino Interactions

Neutrino Interactions

