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Overview
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• Oscillations into light sterile neutrinos may explain anomalies 
   in short-baseline, reactor and radiochemical experiments.

• However, the evidence remains inconclusive due to tension 
   between appearance and disappearance measurements

• The MINOS long-baseline experiment offers a complementary 
   probe of sterile neutrino mixing using νµ disappearance.

PRD 85, 032007 (2012) 

νµ disappearance

MiniBooNE
PRL 110, 161801 (2013)

νe appearance
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The NuMI Accelerator Beam
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‘Neutrinos from the Main Injector’

p

• Operating at Fermilab since 2005.

• Data in both νµ and anti-νµ modes.

• Analysis described in this talk is
   based on exposure of 10.56×1020 
   protons on target (POT) using 
   “low energy” νµ mode.

• Beam has now begun operating in 
   “medium-energy” νµ mode.

Low energy
configuration



The MINOS Detectors
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coilcoil

Far Detector
(5.4 kton, 735 km from source)

• Functionally similar detectors (steel/scintillator, magnetic field).

• Measure flavour composition and energy spectrum in each detector.
    ◊ Can separate νµ CC, anti-νµ CC, νe CC, and NC interactions.

• Measure oscillations by combining information from two detectors.  

Near Detector
(1 kton, 1km from source)



Neutrino Oscillations
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Near Detector

Far Detector

• MINOS has published measurements 
   of standard oscillation parameters 
   ∆m2

32, θ23, θ13:

     νµ disappearance (PRL 110, 251801, 2013)

     νµ→νe appearance (PRL 110, 171801, 2013)

    Combined analysis (PRL 112, 191801, 2014)
νµ CC

νµ CC



Sterile Neutrinos
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s

• The MINOS disappearance data 
   have now been analysed using
   3 + 1 model of sterile neutrinos:

    ◊ 3 active flavours (νe, νµ, ντ).

    ◊ Add 1 sterile flavour (νS)   
       and 1 extra mass state (ν4).

   ⇒ 4 × 4 neutrino mixing matrix.

• Neutrino mixing parameters:

 Standard 3-flavour parameters:

     ◊ ∆m2
32, ∆m2

21

     ◊ θ12, θ23, θ13, δ13

 Additional 4-flavour parameters:

     ◊ ∆m2
43

     ◊ θ14, θ24, θ34, δ14, δ24



Sterile Neutrino Signatures
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Fix to zero (little sensitivity)δ13, δ14, δ24 = 0

    Fix parameters (external data)
sin2θ13=0.024

∆m2
21=7.59×10-5eV2

sin2θ12=0.32

External reactor data (Bugey)θ14

    MINOS νµ disappearance (νµ CC spectrum)

MINOS νµ→νs disappearance (NC spectrum)

∆m2
32, θ23

∆m2
43, θ24

θ34

• Mixing parameters and main constraints: [standard, sterile]

• Main sterile neutrino signatures in MINOS:
 ◊ νµ CC spectrum: search for additional oscillations due to presence 
      of third mass splitting ∆m2

43.
 ◊ NC spectrum: search for deficit caused by νµ→νs disappearance, 
      since NC interaction couples to active and not sterile flavours.



Sterile Neutrino Signatures
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• Sterile neutrino oscillations can 
   occur in both MINOS detectors.

 ◊ Small ∆m2
43 (>∆m2

32) (10-3 – 10-1 eV2)

   Far Detector: additional oscillations above
     3-flavour oscillation maximum

   Near Detector: no effect

 ◊ Medium ∆m2
43 (10-1 – 1 eV2)

   Far Detector: oscillations become rapid 
     and average out, causing a constant 
     depletion (‘counting experiment’).

   Near Detector: no effect

 ◊ Large ∆m2
43 (1 – 102 eV2)

   Far Detector: constant depletion.

   Near Detector: oscillations.



Far Detector CC and NC Spectra
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νµ CC

NC

• Select CC and NC events 
   based on topology.

• Far Detector neutrinos:
   ◊ 2721 νµ CC events

   ◊ 1221 NC events
 (Right plots show comparisons
  with three-flavour predictions).

• Focus on NC event rates:

• No evidence for NC deficit.



Oscillation Analysis

Andy Blake, Cambridge University MINOS Sterile Neutrinos, Slide 11

νµ CC

NC

• Fit the observed FD/ND ratios.
 

  Data samples:

   ◊ Use both CC and NC spectra
       in this analysis [shown right].

  Oscillation parameters:

   ◊ Fit |∆m2
43|, |∆m2

32|, θ23, θ24, θ34.
      (fix all other parameters). 

  Systematic parameters:
   ◊ Incorporate systematics into 
      analysis via covariance matrix.

   ◊ Apply an additional constraint
      on the overall ND event rate.

  Confidence limits:

   ◊ Use Feldman-Cousins procedure
      to correct likelihood surfaces.



Systematic Uncertainties
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Sensitivity to sterile mixing

• 26 systematic uncertainties:
   ◊ Hadron production, beam optics,
      cross-sections, detector effects.
• Incorporate into χ2 function: 

νµ CC

NC



MINOS νµ Disappearance Limits

Andy Blake, Cambridge University MINOS Sterile Neutrinos, Slide 13

• MINOS confidence limits on ∆m2
43 cover four orders of magnitude.

• Strongest constraint on νµ →νs disappearance for ∆m2
43 < 1 eV2.

    Currently analysing 3.4×1020 POT data collected in antineutrino mode.



Comparison with νe Appearance
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• Combine νµ disappearance results
   from MINOS with νe disappearance
   from Bugey reactor experiment.

   ◊ MINOS: 90% C.L. on θ24

   ◊ Bugey: 90% C.L. on θ14*

   ◊ Construct combined limit on
        sin22θµe=sin22θ14 sin2θ24.
 * Bugey limits computed by Patrick Huber 
    using GLoBES 2012 and new reactor fluxes.

• Right: comparison of combined
   limits from MINOS & Bugey 
   with appearance results from 
   MiniBooNE (neutrino-mode), 
   LSND, ICARUS and OPERA.

• The MINOS data increase tension 
   between sterile neutrino results
   for ∆m2

43 < 1 eV2.



First Results from MINOS+
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• The MINOS+ experiment began 
   operating in September 2013

    ◊ Operate the MINOS detectors
        in the upgraded NuMI beam.
    ◊ Higher-energy beam spectrum, 
        with increased beam power.

• Wide-band spectrum enables
   precision measurements of 
   oscillation probability curves.
    ◊ Measure standard oscillations
        with increased precision.
    ◊ Continue searching for new 
        physics e.g. sterile neutrinos.

• First results released last month, 
   based on 1.7×1020 POT exposure.
    ◊ Observe 1085 νµ CC events.

Above: combined spectrum from
           MINOS & MINOS+.
  Enables precision measurement 
  of νµ survival probability curve.



Future Prospects for MINOS+
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Neutrino mode Antineutrino mode

Projected MINOS+ sensitivity by 2016
compared to short-baseline experiments.

Projected MINOS+ sensitivity from
1 year of antineutrino running.

• Also investigating MINOS+ sensitivity to anomalous νe appearance
   above energy of νµ→νe maximum at 735 km.



Summary
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• MINOS long-baseline experiment has completed a search 
   for sterile neutrinos by measuring νµ disappearance.

    ◊ No evidence for sterile neutrino oscillations in νµ mode.

    ◊ Confidence limits span four orders of magnitude in ∆m2
43. 

       Provides strongest constraints on νµ →νs disappearance
       for ∆m2

43 < 1 eV2.
    ◊ Currently analysing MINOS data collected in anti-νµ mode.

• Combination of MINOS and Bugey reactor data yields
   strong confidence limits on sterile neutrino mixing.
    ◊ Increases tension in sterile neutrino data for ∆m2

43 < 1 eV2.

• The MINOS+ experiment offers improved sensitivity to
   sterile neutrino mixing.
    ◊ MINOS+ has released its first spectrum and sensitivities.
    ◊ As well as providing high-statistics νµ disappearance data,
       also investigating sensitivity to anomalous νe appearance.



Backup



Oscillation Analysis



Far/Near Ratio
• The oscillation analysis is based on the observed Far/Near ratio,
   binned as a function of reconstructed energy:

• Advantages of fitting F/N ratio:
  ◊ Enables oscillations from either detector to be incorporated into fit.
  ◊ Exploits approximate cancellation of systematic uncertainties in ratio.

(Calculate separate F/N ratios for CC and NC events).



Oscillation Fit
• The oscillation fit uses the following chi-squared statistic:

     ◊ The covariance matrix V combines both the statistical and
         systematic uncertainties [see next slide].

     ◊ An additional penalty term, (OND-END)2/σND
2, is appended to

         the χ2 function, where OND (END) is the observed (predicted) 
         total ND rate, and σND is the uncertainty on END (σND=50%).

     ◊ The binning scheme is chosen such that END > 15 events 
         in every bin (for the case of three-flavour oscillations).

• This chi-squared statistic is minimised as a function of the 
   five oscillation parameters ∆m2

43, ∆m2
32, θ23, θ24, θ34.



Covariance Matrix

• Covariance matrix is given by:

   ◊ The two terms in the sum represent the total statistical and systematic 
       uncertainty in the predicted F/N ratio.
   ◊ The second term is generated by calculating the bin-to-bin covariances
       for each systematic effect, and then summing over all the systematics.
   ◊ The bin-to-bin covariances are calculated using uncertainty envelopes
       in the F/N ratio, which are obtained by varying the Near and Far 
       simulations according to the ±1σ uncertainties.

Far Detector Uncertainty Near Detector Uncertainty

+ =

Far/Near Ratio

Hadroproduction 



Systematics

• Beam Systematics:
 ◊ Hadroproduction
 ◊ Beam optics

• Detector Effects:
 ◊ Fiducial Volumes
 ◊ Acceptances
 ◊ Event Selection
 ◊ Energy Scales
 ◊ Backgrounds

• Cross-sections:
 ◊ Overall cross-section
 ◊ Resonance-DIS transition
 ◊ Resonance axial mass
 ◊ CC QE axial mass



νµ Disappearance Results



Comparison with νe Appearance

MiniBooNE
PRL 110, 161801 (2013)

sin22θµe = 4|Ue4|2|Uµ4|2   |Ue4|2 = sin2θ14

  |Uµ4|2 = cos2θ14 sin2θ24

• By applying unitarity constraints, can combine experimental results 
   on νµ disappearance (MINOS) and νe disappearance (reactor data) 
   to place constraints on MiniBooNE and LSND appearance signal.

⇒ sin22θµe = sin22θ14 sin2θ24



Combination with Bugey

Bugey likelihood surface computed using 
GLoBES 2012 and new reactor fluxes

∆m2 vs sin22θ14 ∆m2 vs sin22θ24

Bugey



Combination with Bugey

• The Bugey χ2 surface is a function
   of ∆m2 and sin22θ14.

• The MINOS χ2 surface is a function
   of ∆m2 and sin22θ24.

    (corrected using FC procedure).

• Can calculate a combined surface
   in ∆m2 vs sin22θµe = sin22θ14 sin2θ24.

Method:
 ◊ For a given ∆m2, consider all combinations of MINOS and Bugey
     points and calculate sin22θµe and summed χ2 for each combination. 

 ◊ Each value of sin22θµe can occur at different sin22θ14 and sin22θ24,
    so the summed χ2 values are not a unique function of sin22θµe.

 ◊ Combined limit is taken to be the largest value of sin22θµe within 
    the specified confidence interval (e.g. ∆χ2<4.61).



Comparison with νe Appearance

Monte Carlo Simulation Observed Data



Comparison with νe Appearance

Comparison with neutrino results Comparison with antineutrino results



Future Prospects: MINOS+

Potential improvements:
  Improved systematic uncertainties, improved fitting techniques,
  inclusion of reactor data from other experiments.



Production and Detection
of Neutrinos



protons

π+ 
ν

The NuMI beam 
(“Neutrinos at the Main Injector”)

1.5 km

The NuMI Beam

• Direct protons onto 50g segmented graphite target.
     – produces an intense flux of secondary pions and kaons.

• Focus π+/κ+ into tight beam using magnetic focusing.
     – requires two 200kA parabolic electromagnets (act as lenses).

• Direct π+/κ+ into 675m evacuated decay pipe. 
     – need to point the beam 3 degrees into earth to reach Soudan!
     – π+/κ+ decay in pipe to produce µ+/νµ (and ~1% e+/νe).

• Absorb µ in 200m rock to leave pure neutrino beam.
•#

     – produce ~1  neutrino for each proton on target.



The NuMI Beam



The MINOS Detectors

1 kt mass
1 km from target
282 steel planes
153 scintillator planes
100m underground 

5.4 kt mass
735 km from target

486 steel planes
484 scintillator planes

700m underground

Both are steel/scintillator 
tracking detectors.

Magnetized steel (B ~1.3T).

GPS synchronization.

Near Detector Far DetectorFunctionally Identical Detectors!

coilcoil

veto shield



Neutrino Interactions

ν

µ
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activity from 
nuclear recoil
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Neutrino Interactions

νµ + N      µ- + X ν + N      ν + X νe  + N       e- + X

νµ Charged Current (CC) Neutral Current (NC) νe Charged Current (CC)

SIMULATION

µ-

ν e-X

muon track hadronic shower electromagnetic shower
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