LHC signals and dark matter in the SO(5)xU(1) gauge-Higgs unification

Yutaka Hosotani

Funatsu, Hatanaka, YH, Orikasa, Shimotani,

"LHC signals of the $SO(5) \times U(1)$ gauge-Higgs unification" 1404.2748 [PRD89 (2014) 095019] "Dark matter in the $SO(5) \times U(1)$ gauge-Higgs unification" 1407.3574

SUSY 2014, Manchester, England, 24 July 2014

Gauge-Higgs unification

gauge theroy A_M in 5 dim.

Physics DSAKA UNIVERSITY

$$V_{\mathrm{eff}}(heta_H) = \left(rac{m_{\mathrm{KK}}}{2\pi}
ight)^4 U \qquad z_L = 10^7, \quad n_F = 3$$

$$V_{\mathrm{eff}}(heta_H) = \left(rac{m_{\mathrm{KK}}}{2\pi}
ight)^4 U \qquad z_L = 10^7 \ , \ \ n_F = 3$$

Dynamical EW symmetry breaking

$$V_{eff}(\theta_{H}) = \left(\frac{m_{KK}}{2\pi}\right)^{4} U \qquad z_{L} = 10^{7}, \quad n_{F} = 3$$

Dynamical EW symmetry breaking Finite Higgs boson mass generated. Gauge hierarchy prob : solved

$$V_{eff}(\theta_{H}) = \left(\frac{m_{KK}}{2\pi}\right)^{4} U \qquad z_{L} = 10^{7}, \quad n_{F} = 3$$

$$\int_{(a)}^{U} \frac{U}{10} \frac{\theta_{H}}{10} \frac{\theta_{H}}{10} \frac{\theta_{H}}{10} \frac{1}{10} \frac{\theta_{H}}{\pi} \frac{1}{10} \frac{U}{18.665} \frac{\theta_{H}}{18.670} \frac{\theta_{H}}{18.675} \frac{\theta_{H}}{18.675$$

Dynamical EW symmetry breaking Finite Higgs boson mass generated. Gauge hierarchy prob : solved No Higgs boson instability prob.

Universality

We discovered

 $m_{
m KK} \sim rac{1352\,{
m GeV}}{(\sin heta_H)^{0.786}}$

$$m_{Z_R^{(1)}} \sim rac{1038\,{
m GeV}}{(\sin heta_H)^{0.784}}$$

$$m_{Z^{(1)}} \sim rac{1044\,{
m GeV}}{(\sin heta_H)^{0.808}}$$

$$m_{\gamma^{(1)}} \sim rac{1056\,{
m GeV}}{(\sin heta_H)^{0.804}}$$

independent of "dark fermions" n_F

Universality

gauge couplings of SM particles : close to SM Higgs-WW, -ZZ, -qq, -ll : SM x $\cos \theta_H$

gauge couplings of SM particles : close to SM Higgs-WW, -ZZ, -qq, -ll : SM x $\cos \theta_H$

gauge couplings of SM particles : close to SM Higgs-WW, -ZZ, -qq, -ll : SM x $\cos \theta_H$

Low energy physics : close to SM

Low energy physics : close to SM

Need to see other signals at higher energies.

Low energy physics : close to SM

Need to see other signals at higher energies.

Higgs self-couplings λ_3, λ_4

Ζ'

Dark matter

Z' search										
		q 🔨			$e^- \mu^-$					
$ar{q}$ $Z_R^{(1)}, Z^{(1)}, \gamma^{(1)}$ $e^+ \mu^+$										
	$\theta_H = 0.114$				$ heta_H = 0.073$					
	Z'	$m({ m TeV})$	$\Gamma ({ m GeV})$		Z'	$m({ m TeV})$	$\Gamma ({ m GeV})$			
	$Z_R^{(1)}$	5.73	$\boldsymbol{482}$		$Z_R^{(1)}$	8.00	553			
	$Z^{(1)}$	6.07	342		$Z^{(1)}$	8.61	494			
	$\gamma^{(1)}$	6.08	886		$\gamma^{(1)}$	8.61	1040			

Z' search										
		q				$e^- \mu^-$				
$ar{q}$ $Z_R^{(1)}, Z^{(1)}, \gamma^{(1)}$ $e^+ \mu^+$										
	$ heta_H = 0.114$				$ heta_H = 0.073$					
	Z'	$m({ m TeV})$	$\Gamma({ m GeV})$		Z'	$m({ m TeV})$	$\Gamma({ m GeV})$			
	$Z_R^{(1)}$	5.73	$\boldsymbol{482}$		$Z_R^{(1)}$	8.00	553			
	$Z^{(1)}$	6.07	342		$Z^{(1)}$	8.61	494			
	$\gamma^{(1)}$	6.08	886		$\gamma^{(1)}$	8.61	1040			

Large widths

large couplings for right handed quarks/leptons

Physics OSAKA UNIVERSITY 11

Dark fermion becomes Dark matter

SO(5) spinor (F^+, F^0) Necessary for having the observed unstable Higgs F^0 stable \longrightarrow DM

Dark fermion becomes Dark matter

SO(5) spinor (F^+, F^0) Necessary for having the observed unstable Higgs F^0 stable \longrightarrow DM

 $(m_{
m light}, m_{
m heavy}) = (2.46, 2.72)\,{
m TeV}$

1 light and 3 heavy dark fermions

Dominant scattering

Dark matter

relic abundance (WMAP, Planck) direct detection (LUX)

 $(n_F^{
m light},n_F^{
m heavy})=(1,3)$

 $m_{
m DM}=2.3\,{
m TeV}\sim 3.1\,{
m TeV}$

 $\theta_H = 0.097 \sim 0.074$

Dark matter

relic abundance (WMAP, Planck) direct detection (LUX)

 $(n_F^{
m light},n_F^{
m heavy})=(1,3)$

 $m_{
m DM}=2.3\,{
m TeV}\sim3.1\,{
m TeV}$

 $\theta_H = 0.097 \sim 0.074$

SO(5)xU(1) gauge-Higgs unification

Higgs boson = gauge field, fluctuation mode of θ_H

Close to SM at low energies.

Gauge hierarchy problem solved.

No Higgs instability problem.

SO(5)xU(1) gauge-Higgs unification

Higgs boson = gauge field, fluctuation mode of θ_H

Close to SM at low energies.

Gauge hierarchy problem solved.

No Higgs instability problem.

 $Z' [Z_R^{(1)}, Z^{(1)}, \gamma^{(1)}]$ bosons in 6.5 to 8 TeV

Dark fermions -> Dark Matter 2.3 TeV to 3.1 TeV

SO(5)xU(1) gauge-Higgs unification

Higgs boson = gauge field, fluctuation mode of θ_H

Close to SM at low energies.

Gauge hierarchy problem solved.

No Higgs instability problem.

 $Z' [Z_R^{(1)}, Z^{(1)}, \gamma^{(1)}]$ bosons in 6.5 to 8 TeV

Dark fermions -> Dark Matter 2.3 TeV to 3.1 TeV

Promising !

