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Figure 14: The observed local p-value for 7 TeV and 8 TeV data, and their combination as a

function of the SM Higgs boson mass. The dashed line shows the expected local p-values for a

SM Higgs boson with a mass mH.
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Figure 15: The observed local p-value for the five decay modes and the overall combination as

a function of the SM Higgs boson mass. The dashed line shows the expected local p-values for

a SM Higgs boson with a mass mH.
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deep origin in quantum gravity.

As well know, new physics in addition to the SM is required to explain neutrino masses

and mixings, and also dark matter. The mechanism responsible for neutrino masses could

affect the Higgs quartic coupling; as an example, we consider the impact that the inclusion

of neutrino masses via a type I seesaw has on electroweak stability, discussing in some

detail the shallow false minimum configuration.

The paper is organized as follows. In sec. II we discuss the input parameters and

the NNLO renormalization procedure used to extrapolate the Higgs potential up to the

Planck scale. An analysis of electroweak vacuum stability and the associated constraints

on the top and Higgs masses, with a detailed discussion of the theoretical errors and the

prospects for the future, are presented in sec. III. In sec. IV we investigate the boundary

conditions leading to the particularly interesting configuration of a shallow false minimum

below the Planck scale. Sec. V is devoted to the upper bound on the seesaw right-handed

neutrino masses following from the requirement of electroweak vacuum stability. Con-

clusions are drawn in sec.VI. AppendixA contains the relevant formulas for the NNLO

running procedure in the SM and, in appendixB, those to incorporate the type I seesaw

mechanism.

II. INPUT PARAMETERS AND RENORMALIZATION AT NNLO

The normalization of the Higgs quartic coupling λ is chosen in this paper so that the

potential for the physical Higgs φH contained in the Higgs doublet H = (0, (φH + v)/
√
2)

is given, at tree level, by

V (φH) =
λ

6

�
|H|2 − v

2

2

�2

≈ λ

24
φ
4
H

, (1)

where v = 1/(
√
2Gµ)1/2 = 246.221 GeV and Gµ = 1.1663787(6)×10−5

/GeV2 is the Fermi

constant from muon decay [19]. The approximation in eq. (1) holds when considering large

field values. According to our normalization, the physical Higgs mass satisfies the tree

level relation m
2
H

= λv
2
/3. In addition, the mass of the fermion f reads, at tree level,

mf = hfv/
√
2, where hf denotes the associated Yukawa coupling.

In order to extrapolate the behavior of the Higgs potential at very high energies, we

adopt the MS scheme and consider the Renormalization Group (RG) evolution for the

relevant couplings which, in addition to the Higgs quartic coupling λ, are the gauge g,

g
�, g3, and the top Yukawa ht couplings. We work at NNLO, namely 3-loops for the

β-functions and 2-loops for the matching conditions at some suitable scale.

It is customary to introduce the dimensionless parameter t = log µ/mZ , where µ stands

for the renormalization scale and mZ is the Z boson mass. The RG equations for the
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and using, from bottom to top, µ = mZ ,mt, 2mt. The plot shows that the associated

theoretical uncertainty is about 2%. The analytical expression for ht(mt) is:

ht(mt) = 0.933 + 0.006 (mt[GeV]− 172) +0.017
−0.013 . (7)

The procedure adopted in previous analyses of the stability of the electroweak vacuum

was to use the experimental value of mt, identified with the one measured at the Tevatron

by the CDF and D0 collaborations,mexp

t = 173.2±0.9GeV [16], to extrapolate the running

Yukawa ht(mt) via eq. (7). However, as discussed in ref. [15], it is not meaningful to use

the mass parameter provided by the Tevatron as the pole top mass to be inserted in

eq. (7): the running top mass in the MS scheme is instead a well defined parameter that

can be directly extracted at NNLO from Tevatron measurements of the inclusive top pair

production cross-section, giving mt(mt) = 163.3 ± 2.7 GeV [15]. So, it is conceptually

more robust and practically more convenient to extract the top Yukawa coupling directly

from mt(mt), as will be done in the following1. Our results will thus be presented as a

function of mt(mt).

Notice that, according to eq. (7), the value of the top pole mass can be easily recov-

ered via the relation mt = mt(mt) + 9.6 +2.9
−2.3 GeV, which however is plagued by a large
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FIG. 2: Values of ht(mt) and mt(mt) as a function of mt. The curves are obtained by matching

at different scales, which are indicated by the labels. We fixed mH = 126 GeV for definiteness

but the results do not significantly dependent on mH , provided it is chosen in its experimental

range.

1 At difference, ref. [15] proceeds in a more complicated way: the value of mt(mt) is translated into a

value of mt, to be inserted in the expression of the lower bound on mH ensuring electroweak vacuum

stability as derived in ref. [14].
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FIG. 3: The SM Higgs potential (left) and the quartic Higgs coupling (right) as functions of the

renormalization scale µ, for mH = 126 GeV and different values of mt(mt), increasing from top

to bottom by the amount indicated by the labels. The dashed curve in the right plot shows the

associated value of βλ(µ). The other input parameters are fixed at the central values discussed

in the previous section.

for the same parameter values; there is only a single dashed curve because βλ(µ) mildly

depends on mt(mt) if the latter is in the range 161 − 163 GeV. Let call µβ the renor-

malization scale such that βλ(µβ) = 0. Clearly, only in the case of two degenerate vacua

the conditions βλ(µβ) = 0 and λ(µβ) = 0 are simultaneously met. For a shallow false

minimum we instead have βλ(µβ) = 0 and λ(µβ) = O(10−5), as already mentioned.

In fig. 4 we show how µβ depends on mt(mt), for various values of mH . It is remarkable

that µβ is maximized and nearly constant for the values of mt(mt) for which λ(µ) is very

small.
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renormalization scale µ, for mH = 126 GeV and different values of mt(mt), increasing from top

to bottom by the amount indicated by the labels. The dashed curve in the right plot shows the

associated value of βλ(µ). The other input parameters are fixed at the central values discussed

in the previous section.
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depends on mt(mt) if the latter is in the range 161 − 163 GeV. Let call µβ the renor-

malization scale such that βλ(µβ) = 0. Clearly, only in the case of two degenerate vacua

the conditions βλ(µβ) = 0 and λ(µβ) = 0 are simultaneously met. For a shallow false

minimum we instead have βλ(µβ) = 0 and λ(µβ) = O(10−5), as already mentioned.

In fig. 4 we show how µβ depends on mt(mt), for various values of mH . It is remarkable

that µβ is maximized and nearly constant for the values of mt(mt) for which λ(µ) is very

small.
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FIG. 3: The SM Higgs potential (left) and the quartic Higgs coupling (right) as functions of the

renormalization scale µ, for mH = 126 GeV and different values of mt(mt), increasing from top

to bottom by the amount indicated by the labels. The dashed curve in the right plot shows the

associated value of βλ(µ). The other input parameters are fixed at the central values discussed

in the previous section.

for the same parameter values; there is only a single dashed curve because βλ(µ) mildly

depends on mt(mt) if the latter is in the range 161 − 163 GeV. Let call µβ the renor-

malization scale such that βλ(µβ) = 0. Clearly, only in the case of two degenerate vacua

the conditions βλ(µβ) = 0 and λ(µβ) = 0 are simultaneously met. For a shallow false

minimum we instead have βλ(µβ) = 0 and λ(µβ) = O(10−5), as already mentioned.

In fig. 4 we show how µβ depends on mt(mt), for various values of mH . It is remarkable

that µβ is maximized and nearly constant for the values of mt(mt) for which λ(µ) is very

small.
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point

9

We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.

Α3

ΜΛ

METASTABILIT
Y

STABILITY

Α3�mZ��0.1213
Α3�mZ��0.1196
Α3�mZ��0.1179

124.5 125.0 125.5 126.0 126.5 127.0

160

161

162

163

164

165

166

170

172

174

176

mH �GeV�

m
t�m t��

G
eV
�

m
t�GeV

�
FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point

PROSPEC
TS	
  

NEED	
  MORE	
  
PRECISE	
  
MEASURE	
  

ILC	
  	
  

LHC	
  

For	
  a	
  recent	
  paper	
  on	
  the	
  determinaPon	
  of	
  mt	
  see	
  e.g.	
  S.	
  Frixione	
  1407.2763	
  



YES!	
  e.g.	
  extend	
  the	
  SM	
  by	
  including	
  scalar	
  
[J.Elias-­‐Miro,	
  J.R.Espinosa,	
  G.F.Giudice,	
  H.M.Lee	
  ,	
  1203.	
  0237]	
  

…instead	
  seesaw	
  neutrinos	
  could	
  destabilize!	
  

Possible	
  to	
  stabilize	
  the	
  Higgs	
  potenPal	
  	
  
in	
  case	
  it	
  will	
  turn	
  out	
  that	
  the	
  SM	
  one	
  is	
  metastable?	
  

	
  



Higgs	
  inflaPon	
  2)	
  	
  

Now	
  that	
  we	
  have	
  some	
  idea	
  of	
  the	
  shape	
  of	
  SM	
  Higgs	
  potenPal	
  “hill”,	
  	
  
is	
  it	
  possible	
  to	
  exploit	
  it	
  for	
  inflaPon?	
  	
  	
  

Profilo	
  
alPmetrico	
  
delle	
  alpi	
  
apuane	
  



YES!	
  If,	
  for	
  some	
  reason,	
  there	
  has	
  been	
  a	
  period	
  in	
  which	
  the	
  
Hubble	
  rate	
  was	
  dominated	
  by	
  a	
  nearly	
  constant	
  VH>0	
  	
  

!a(t)
a(t)
!

"
#

$

%
&

2

' H (t)2 ( VH (µ0 )
3MPl

2

a(t)! eH t

VH	
  acts	
  as	
  
cosmological	
  
constant	
  term	
  	
  

EXPONENTIAL	
  EXPANSION	
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FIG. 3: The SM Higgs potential (left) and the quartic Higgs coupling (right) as functions of the

renormalization scale µ, for mH = 126 GeV and different values of mt(mt), increasing from top

to bottom by the amount indicated by the labels. The dashed curve in the right plot shows the

associated value of βλ(µ). The other input parameters are fixed at the central values discussed

in the previous section.

for the same parameter values; there is only a single dashed curve because βλ(µ) mildly

depends on mt(mt) if the latter is in the range 161 − 163 GeV. Let call µβ the renor-

malization scale such that βλ(µβ) = 0. Clearly, only in the case of two degenerate vacua

the conditions βλ(µβ) = 0 and λ(µβ) = 0 are simultaneously met. For a shallow false

minimum we instead have βλ(µβ) = 0 and λ(µβ) = O(10−5), as already mentioned.

In fig. 4 we show how µβ depends on mt(mt), for various values of mH . It is remarkable

that µβ is maximized and nearly constant for the values of mt(mt) for which λ(µ) is very

small.
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FIG. 4: The scale µβ as a function of mt(mt) and for different values of mH , as indicated by

the labels.

because	
  	
  
	
  

there	
  is	
  no	
  slow	
  roll	
  in	
  general	
  

Small field: 
  

does not work in the “pure” 
SM (without any addition) 

(φ < MPl)



With an inflection point  
slow roll can occur … 
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[see e.g. G.Isidori V.Rychkov A.Strumia N.Tetradis, 0712.0242] 
 …but there are not enough e-folds for inflation  

Small field: 
  

does not work in the “pure” 
SM (without any addition) 

(φ < MPl)
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There would arise possibilities that the SM Higgs field is the inflaton  
if we loose the above assumptions 

These conclusions holds for a rolling Higgs having  
canonical kinetic term and minimal coupling to gravity 



These conclusions holds for a rolling Higgs having  
canonical kinetic term and minimal coupling to gravity 
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There would arise possibilities that the SM Higgs field is the inflaton  
if we loose the above assumptions 

Flatten the Higgs potential:  
      e.g. via non-minimal gravitational coupling  

(new inflation = slow roll) 
1 

+ξ h2 



These conclusions holds for a rolling Higgs having  
canonical kinetic term and minimal coupling to gravity 

S = d 4x !g M 2
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There would arise possibilities that the SM Higgs field is the inflaton  
if we loose the above assumptions 

The Higgs is not rolling but is trapped in  
a false vacuum (=old inflation); 

another slow rolling field acts as curvaton  
and as a clock to end inflation 

2 

+curvaton 



The NEW DATA from BICEP2 

17 March 2014:  
 

detected B-modes (curl component) of the polarization of the CMB at the level of    

    
                               r = 0.20−0.05  
 

arXiv:1403.3985 

+0.07 tensor-to-scalar 
ratio of amplitudes 

disfavouring r = 0 at the level of 7σ (5.9σ after foreground subtraction) 



In a model were slow-roll is applicable   

 0.20−0.05 
+0.07 

V1/4 ≈ 2 x 1016 GeV 

Pl 



	
  
EXAMPLE	
  1	
  

	
  
Non-­‐minimal	
  coupling	
  Higgs	
  InflaPon	
  

(new	
  inflaPon	
  type)	
  
	
  



F.Bezrukov M.Shaposhnikov, 0710.3755 

A.O.Barvinsky A.Kamenshchik C.Kiefer A.Starobinsky C.Steinwachs 
0809.2104, 0910.1041  

“The Standard Model Higgs boson as the inflaton”  Phys.Lett. B659 (2008) 703 
 
Following papers also in collaboration with Gorbunov, Magnin, Sibiryakov, Kalmykov, Kniehl 
0812.4950, 0904.1537,1008.5157, 1111.4397, 1205.2893  

A. De Simone, M.P. Hertzberg F. Wilczek, 0812.4946  

L.A. Popa, N. Mandolesi, A. Caramete, C. Burigana, 0907.5558, 0910.5312, 1009.1293 
 

etc 

 H.M. Lee G.Giudice O. Lebedev, 1010.1417, 1105.2284  

H.M. Lee 1301.1787  

BIBLIOGRAPHY 

1403.6078 

After BICEP2, see e.g. 

F.Bezrukov M.Shaposhnikov,  
Y.Hamada H.Kawai K.Oda S.C.Park  1403.5043 
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A	
  configuraPon	
  more	
  (or	
  as	
  stable	
  as)	
  an	
  
inflecPon	
  point	
  is	
  necessary	
  for	
  Higgs	
  inflaPon	
  

via	
  non-­‐minimal	
  gravitaPon	
  couplings	
  

φH	
  

V(φH)	
  

plateau	
  for	
  
slow-­‐roll	
  

M
!

M

stay	
  on	
  RED	
  BAND	
  



1403.6078	
  F.Bezrukov M.Shaposhnikov,  

A	
  non-­‐minimal	
  coupling	
  of	
  about	
  10	
  might	
  do	
  the	
  job	
  
(for	
  quite	
  low	
  mt	
  and	
  quite	
  high	
  mH	
  )	
  



	
  
EXAMPLE	
  2	
  

	
  
Shallow	
  false	
  minimum	
  	
  

(old	
  inflaPon	
  type	
  revisited)	
  
	
  

I.M.	
  A.Notari,	
  	
  Phys.Rev.	
  D85	
  (2012)	
  123506	
  [1112.2659],	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Phys.Rev.LeR.	
  108	
  (2012)	
  191302	
  [1112.5430],	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  JCAP	
  1211	
  (2012)	
  031	
  	
  [1204.4155]	
  	
  

BIBLIOGRAPHY	
  

I.M.,	
  PRD	
  1403.5244	
  Ader	
  BICEP2,	
  see	
  e.g.	
  



InflaPon	
  ends	
  thanks	
  to	
  some	
  other	
  mechanism	
  

V(φH)	
  

φH	
  MPl	
  

	
  assume	
  that	
  the	
  Universe	
  started	
  with	
  
the	
  Higgs	
  trapped	
  in	
  this	
  false	
  vacuum	
  

In	
  this	
  scenario	
  the	
  Higgs	
  cannot	
  be	
  the	
  curvaton	
  	
  



V(φH)	
  

φH	
  MPl	
  

This	
  scenario	
  required	
  mH	
  =	
  123-­‐130	
  GeV	
  (before	
  Higgs	
  discovery)	
  NB	
  1.	
  

	
  assume	
  that	
  the	
  Universe	
  started	
  with	
  
the	
  Higgs	
  trapped	
  in	
  this	
  false	
  vacuum	
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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163.3	
  ±	
  2.7	
  

Before	
  LHC…	
  

Shallow	
  false	
  
minimum	
  Higgs	
  
inflaPon	
  requires	
  

stability	
  

PredicPon	
  that	
  mH	
  	
  is	
  in	
  the	
  range	
  123-­‐130	
  GeV	
  	
  appeared	
  on	
  the	
  arXiv	
  before	
  
LHC	
  3σ announcement	
  [I.M.	
  A.Notari	
  1112.2659]	
  

LHC	
  



V(φH)	
  

φH	
  MPl	
  

Clean	
  predicPon	
  for	
  r	
  	
  (ns	
  is	
  instead	
  model	
  dependent)	
  

	
  assume	
  that	
  the	
  Universe	
  started	
  
with	
  the	
  Higgs	
  in	
  this	
  false	
  vacuum	
  

This	
  scenario	
  required	
  mH	
  =	
  123-­‐130	
  GeV	
  (before	
  Higgs	
  discovery)	
  NB	
  1.	
  

NB	
  2.	
  



2!10"9 # $R
2 =

2
3! 2

1
r
VH (µ0 )
M 4

determined	
  by	
  mH	
  	
  
(mt	
  choosen	
  in	
  order	
  to	
  
have	
  false	
  minimum)	
  	
  

BICEP2	
  can	
  be	
  
accomodated	
  
within	
  2σ:	
  
large	
  mH	
  	
  
small	
  mt	
  

small	
  α3(mZ)	
  

IM,	
  PRD	
  1403.5244	
  



IM	
  Notari,	
  arXiv:1112.2659,	
   1204.4155	
  
A	
  model	
  in	
  scalar-­‐tensor	
  gravity	
   &	
  a	
  model	
  with	
  hybrid	
  inflaPon	
  

KO	
  because	
  or	
  r	
  and	
  nS	
  
[see	
  e.g.	
  Fairbairn	
  et	
  al	
  	
  1403.7483]	
  

Realiza+ons	
  of	
  the	
  scenario:	
  

V(φH)	
  

φH	
  MPl	
  

	
  assume	
  that	
  the	
  Universe	
  started	
  
with	
  the	
  Higgs	
  in	
  this	
  false	
  vacuum	
  

Not	
  saPsfactory	
  but	
  maybe…	
  



worth	
  to	
  develop	
  more	
  models	
  	
  to	
  beRer	
  explore	
  
the	
  idea	
  of	
  shallow	
  false	
  minimum	
  Higgs	
  inflaPon	
  

IM,	
  PRD	
  1403.5244	
  

Anyway…	
  	
  
	
  

the	
  numerical	
  
concordance	
  	
  
is	
  so	
  intriguing	
  



CONCLUSIONS	
  
1)  Stability/Metastability	
  of	
  the	
  Higgs	
  potenPal	
  in	
  the	
  SM:	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  calls	
  for	
  more	
  precise	
  measurement	
  of	
  top	
  mass	
  	
  

2)	
  SM	
  Higgs	
  inflaPon	
  models:	
  
	
  	
  	
  	
  	
  	
  seem	
  promising	
  and	
  calls	
  for	
  confirmaPon	
  of	
  r	
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  more	
  precise	
  measurement	
  of	
  top	
  mass	
  	
  

2)	
  SM	
  Higgs	
  inflaPon	
  models:	
  
	
  	
  	
  	
  	
  	
  seem	
  promising	
  and	
  calls	
  for	
  confirmaPon	
  of	
  r	
  

The	
  measured	
  value	
  	
  
of	
  the	
  Higgs	
  boson	
  mass	
  is	
  intriguing!!	
  	
  



backup	
  



Main	
  difficulty	
  of	
  the	
  false	
  vacuum	
  scenario:	
  
provide	
  a	
  graceful	
  exit	
  from	
  inflaPon	
  

	
  A	
  graceful	
  exit	
  would	
  require	
  
that	
  a{er	
  some	
  Pme	
  

There	
  are	
  enough	
  e-­‐folds	
  of	
  inflaPon	
  
…but	
  an	
  insufficient	
  number	
  of	
  bubbles	
  is	
  produced	
  inside	
  a	
  Hubble	
  horizon…	
  

H4	
  >>	
  	
  Γ	
  
nucleaPon	
  rate	
  per	
  	
  
unit	
  Pme	
  and	
  volume	
  

To	
  end	
  inflaPon	
  the	
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the atmospheric oscillations. This is supported by the following argument.

It is well known that the β-function of the Higgs quartic coupling is affected only

if hν(µ), the Yukawa coupling of the Dirac mass term (defined only for µ ≥ Mν), is

large enough. As the top Yukawa coupling, also the neutrino Yukawa coupling induces a

suppression of the Higgs quartic coupling at high energy. By increasing Mν and mν , the

neutrino Yukawa coupling at the threshold scale Mν also increases:

hν(Mν) = 2

�
mν(Mν)Mν

v2
. (12)

This justifies that the fact that we equate mν to the the atmospheric mass scale, about

0.06 eV, which is the lowest possible value for the heaviest among the three light neu-

trinos. In addition, two other Majorana neutrinos with masses lighter than mν can be

accommodated via the seesaw but, if their right-handed neutrinos are lighter than Mν ,

the associated Dirac Yukawa couplings are naturally expected to be smaller, and their

effect on λ(µ) negligible.

In Appendix B we provide the additional terms (with respect to the pure SM) for the

relevant β-functions, above and below the scale Mν .

Since the effect of hν is a suppression of λ, a configuration with a stable electroweak

vacuum in the SM, could be rendered metastable because of the addition of the seesaw

interaction. For a fixed value of mH , one can find the upper bound on Mν following

from the requirement that the electroweak vacuum is not destabilized. As shown in fig. 8

for mH = 126 GeV (but similar upper bounds are obtained in the whole experimental

mH�126 GeV
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3.0� 1014

mt�mt� �GeV�

M
Ν
�GeV

�

FIG. 8: Upper bound on Mν as a function of the running top mass, following from the require-

ment that the electroweak vacuum is not destabilized because of the inclusion of the seesaw, for

mH = 126 GeV. The shaded region is obtained by varying α3(mZ) in its 1σ range.

E.g.	
  :	
  assume	
  one	
  generaPon	
  giving	
  mν=0.06	
  eV	
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range of mH), such upper bound strongly depends on the top mass3 and is affected by an

uncertainty which is mainly due to α3(mZ) (shaded region). The smaller the top mass

is, the more the configuration is stable and the less stringent is the Mν upper bound,

Mν � 3 × 1014 GeV. But increasing the top mass, the electroweak vacuum becomes less

stable and the upper bound on Mν becomes accordingly more and more stringent.

Let consider in particular the upper bound on Mν needed to avoid destabilization of an

inflection point configuration, as the one depicted via the dashed line in fig. 9. Notice that

an inflection point becomes a not so shallow local second minimum if Mν ∼ 1011 GeV and

that electroweak vacuum destabilization is avoided only if the condition Mν � 2 × 1011

GeV is satisfied. The latter bound might be relevant for models of inflation based on the

SM shallow false minimum [7, 17, 18]; note however that it is well compatible with the

thermal leptogenesis mechanism to explain matter-antimatter asymmetry, for which the

lower bound on the lightest Majorana neutrino is about 5× 108 GeV [45].

Clearly, the neutrino Yukawa coupling yν is not the only additional term beyond the

SM capable of modifying the running of λ at high energy. Always in the context of type I

seesaw, in the case that the vacuum expectation value of a singlet scalar field S (violating

the lepton number by two units) is actually at the origin of the right-handed Majorana

neutrino mass, the S couplings induce an enhancement of λ, thus helping the stability of
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V
�Μ�1�4
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FIG. 9: The Higgs potential as function of the renormalization scale, for mH = 126 GeV and a

value of the top mass leading to an inflection point configuration in the SM case (dashed curve).

The lower curves display the effect of adding the seesaw, with three increasing values of Mν

from top to bottom (solid curves).

3
This dependence was not considered in the previous literature.
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