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Figure 14: The observed local p-value for 7 TeV and 8 TeV data, and their combination as a

function of the SM Higgs boson mass. The dashed line shows the expected local p-values for a

SM Higgs boson with a mass mH.
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Figure 15: The observed local p-value for the five decay modes and the overall combination as

a function of the SM Higgs boson mass. The dashed line shows the expected local p-values for

a SM Higgs boson with a mass mH.
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the	  SM	  Higgs	  boson!	  	  
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Finally	  possible	  to	  study	  the	  shape	  	  
of	  the	  SM	  Higgs	  potenPal	  	  
up	  to	  the	  Planck	  scale!!!	  
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deep origin in quantum gravity.

As well know, new physics in addition to the SM is required to explain neutrino masses

and mixings, and also dark matter. The mechanism responsible for neutrino masses could

affect the Higgs quartic coupling; as an example, we consider the impact that the inclusion

of neutrino masses via a type I seesaw has on electroweak stability, discussing in some

detail the shallow false minimum configuration.

The paper is organized as follows. In sec. II we discuss the input parameters and

the NNLO renormalization procedure used to extrapolate the Higgs potential up to the

Planck scale. An analysis of electroweak vacuum stability and the associated constraints

on the top and Higgs masses, with a detailed discussion of the theoretical errors and the

prospects for the future, are presented in sec. III. In sec. IV we investigate the boundary

conditions leading to the particularly interesting configuration of a shallow false minimum

below the Planck scale. Sec. V is devoted to the upper bound on the seesaw right-handed

neutrino masses following from the requirement of electroweak vacuum stability. Con-

clusions are drawn in sec.VI. AppendixA contains the relevant formulas for the NNLO

running procedure in the SM and, in appendixB, those to incorporate the type I seesaw

mechanism.

II. INPUT PARAMETERS AND RENORMALIZATION AT NNLO

The normalization of the Higgs quartic coupling λ is chosen in this paper so that the

potential for the physical Higgs φH contained in the Higgs doublet H = (0, (φH + v)/
√
2)

is given, at tree level, by

V (φH) =
λ

6

�
|H|2 − v

2

2

�2

≈ λ

24
φ
4
H

, (1)

where v = 1/(
√
2Gµ)1/2 = 246.221 GeV and Gµ = 1.1663787(6)×10−5

/GeV2 is the Fermi

constant from muon decay [19]. The approximation in eq. (1) holds when considering large

field values. According to our normalization, the physical Higgs mass satisfies the tree

level relation m
2
H

= λv
2
/3. In addition, the mass of the fermion f reads, at tree level,

mf = hfv/
√
2, where hf denotes the associated Yukawa coupling.

In order to extrapolate the behavior of the Higgs potential at very high energies, we

adopt the MS scheme and consider the Renormalization Group (RG) evolution for the

relevant couplings which, in addition to the Higgs quartic coupling λ, are the gauge g,

g
�, g3, and the top Yukawa ht couplings. We work at NNLO, namely 3-loops for the

β-functions and 2-loops for the matching conditions at some suitable scale.

It is customary to introduce the dimensionless parameter t = log µ/mZ , where µ stands

for the renormalization scale and mZ is the Z boson mass. The RG equations for the
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and using, from bottom to top, µ = mZ ,mt, 2mt. The plot shows that the associated

theoretical uncertainty is about 2%. The analytical expression for ht(mt) is:

ht(mt) = 0.933 + 0.006 (mt[GeV]− 172) +0.017
−0.013 . (7)

The procedure adopted in previous analyses of the stability of the electroweak vacuum

was to use the experimental value of mt, identified with the one measured at the Tevatron

by the CDF and D0 collaborations,mexp

t = 173.2±0.9GeV [16], to extrapolate the running

Yukawa ht(mt) via eq. (7). However, as discussed in ref. [15], it is not meaningful to use

the mass parameter provided by the Tevatron as the pole top mass to be inserted in

eq. (7): the running top mass in the MS scheme is instead a well defined parameter that

can be directly extracted at NNLO from Tevatron measurements of the inclusive top pair

production cross-section, giving mt(mt) = 163.3 ± 2.7 GeV [15]. So, it is conceptually

more robust and practically more convenient to extract the top Yukawa coupling directly

from mt(mt), as will be done in the following1. Our results will thus be presented as a

function of mt(mt).

Notice that, according to eq. (7), the value of the top pole mass can be easily recov-

ered via the relation mt = mt(mt) + 9.6 +2.9
−2.3 GeV, which however is plagued by a large
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FIG. 2: Values of ht(mt) and mt(mt) as a function of mt. The curves are obtained by matching

at different scales, which are indicated by the labels. We fixed mH = 126 GeV for definiteness

but the results do not significantly dependent on mH , provided it is chosen in its experimental

range.

1 At difference, ref. [15] proceeds in a more complicated way: the value of mt(mt) is translated into a

value of mt, to be inserted in the expression of the lower bound on mH ensuring electroweak vacuum

stability as derived in ref. [14].
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pair	  producPon	  at	  hadron	  colliders	  	  

In	  this	  way	  one	  avoids	  the	  theorePcal	  error	  due	  to	  matching	  

…essenPally	  agrees	  with	  results	  obtained	  via	  the	  other	  method	  for:	  	  	  	  mt=	  mt	  +	  10	  GeV	  	  

Need	  to	  know	  
top	  mass:	  



Chetyrkin	  Zoller,	  JHEP	  arXiv:1205.2892,	  1303.2890	  	  

	  	  g(µ),	  g’	  (µ),	  g3(µ),	  λ(µ),	  yt(µ)	  

Running	  	  

Fig	  from:	  BuRazzo	  Degrassi	  Giardino	  Giudice	  
Sala	  Salvio	  Strumia,	  JHEP	  	  1307.3536	  



Let	  focus	  on	  the	  running	  of	  λ	  

Largest	  error	  due	  	  
to	  top	  mass	  

	  

Towards	  λ<0	  if:	  
Mt	  large,	  
α3	  small,	  
mH	  small	  	  

Fig	  from:	  BuRazzo	  Degrassi	  Giardino	  Giudice	  Sala	  Salvio	  Strumia,	  JHEP	  	  1307.3536	  

Second	  largest	  to	  α3	




Increasing	  mt	  	  
	  λ goes	  nega+ve…	  

Fix	  mH	  =	  126	  GeV	  and	  α3(mZ)	


Fig	  from:	  IM,	  PRD	  1209.0393	  

λ(µ)  > 0    stability	  
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FIG. 3: The SM Higgs potential (left) and the quartic Higgs coupling (right) as functions of the

renormalization scale µ, for mH = 126 GeV and different values of mt(mt), increasing from top

to bottom by the amount indicated by the labels. The dashed curve in the right plot shows the

associated value of βλ(µ). The other input parameters are fixed at the central values discussed

in the previous section.

for the same parameter values; there is only a single dashed curve because βλ(µ) mildly

depends on mt(mt) if the latter is in the range 161 − 163 GeV. Let call µβ the renor-

malization scale such that βλ(µβ) = 0. Clearly, only in the case of two degenerate vacua

the conditions βλ(µβ) = 0 and λ(µβ) = 0 are simultaneously met. For a shallow false

minimum we instead have βλ(µβ) = 0 and λ(µβ) = O(10−5), as already mentioned.

In fig. 4 we show how µβ depends on mt(mt), for various values of mH . It is remarkable

that µβ is maximized and nearly constant for the values of mt(mt) for which λ(µ) is very

small.
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FIG. 4: The scale µβ as a function of mt(mt) and for different values of mH , as indicated by

the labels.

…	  and	  V	  is	  destabilized	  

mt	  	  	  

V (φH) ≈ λ(µ)

24
φ4
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mt	  	  	  
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Fig	  from:	  IM,	  PRD	  1209.0393	  
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renormalization scale µ, for mH = 126 GeV and different values of mt(mt), increasing from top

to bottom by the amount indicated by the labels. The dashed curve in the right plot shows the

associated value of βλ(µ). The other input parameters are fixed at the central values discussed

in the previous section.

for the same parameter values; there is only a single dashed curve because βλ(µ) mildly

depends on mt(mt) if the latter is in the range 161 − 163 GeV. Let call µβ the renor-

malization scale such that βλ(µβ) = 0. Clearly, only in the case of two degenerate vacua

the conditions βλ(µβ) = 0 and λ(µβ) = 0 are simultaneously met. For a shallow false

minimum we instead have βλ(µβ) = 0 and λ(µβ) = O(10−5), as already mentioned.

In fig. 4 we show how µβ depends on mt(mt), for various values of mH . It is remarkable

that µβ is maximized and nearly constant for the values of mt(mt) for which λ(µ) is very

small.
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FIG. 3: The SM Higgs potential (left) and the quartic Higgs coupling (right) as functions of the

renormalization scale µ, for mH = 126 GeV and different values of mt(mt), increasing from top

to bottom by the amount indicated by the labels. The dashed curve in the right plot shows the

associated value of βλ(µ). The other input parameters are fixed at the central values discussed

in the previous section.

for the same parameter values; there is only a single dashed curve because βλ(µ) mildly

depends on mt(mt) if the latter is in the range 161 − 163 GeV. Let call µβ the renor-

malization scale such that βλ(µβ) = 0. Clearly, only in the case of two degenerate vacua

the conditions βλ(µβ) = 0 and λ(µβ) = 0 are simultaneously met. For a shallow false

minimum we instead have βλ(µβ) = 0 and λ(µβ) = O(10−5), as already mentioned.

In fig. 4 we show how µβ depends on mt(mt), for various values of mH . It is remarkable

that µβ is maximized and nearly constant for the values of mt(mt) for which λ(µ) is very

small.
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point

IM,	  PRD	  arXiv:1209.0393	  
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Thickness	  
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…essenPally	  agrees	  with	  results	  obtained	  via	  the	  other	  method	  for:	  	  	  	  mt=	  mt	  +	  10	  GeV	  	  



…	  anyway	  results	  are	  essenPally	  the	  same!	  

Fig	  from:	  BuRazzo	  Degrassi	  Giardino	  Giudice	  Sala	  Salvio	  Strumia,	  JHEP	  	  1307.3536	  
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lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point

PROSPEC
TS	  

NEED	  MORE	  
PRECISE	  
MEASURE	  

ILC	  	  

LHC	  

For	  a	  recent	  paper	  on	  the	  determinaPon	  of	  mt	  see	  e.g.	  S.	  Frixione	  1407.2763	  



YES!	  e.g.	  extend	  the	  SM	  by	  including	  scalar	  
[J.Elias-‐Miro,	  J.R.Espinosa,	  G.F.Giudice,	  H.M.Lee	  ,	  1203.	  0237]	  

…instead	  seesaw	  neutrinos	  could	  destabilize!	  

Possible	  to	  stabilize	  the	  Higgs	  potenPal	  	  
in	  case	  it	  will	  turn	  out	  that	  the	  SM	  one	  is	  metastable?	  

	  



Higgs	  inflaPon	  2)	  	  

Now	  that	  we	  have	  some	  idea	  of	  the	  shape	  of	  SM	  Higgs	  potenPal	  “hill”,	  	  
is	  it	  possible	  to	  exploit	  it	  for	  inflaPon?	  	  	  

Profilo	  
alPmetrico	  
delle	  alpi	  
apuane	  



YES!	  If,	  for	  some	  reason,	  there	  has	  been	  a	  period	  in	  which	  the	  
Hubble	  rate	  was	  dominated	  by	  a	  nearly	  constant	  VH>0	  	  

!a(t)
a(t)
!

"
#

$

%
&

2

' H (t)2 ( VH (µ0 )
3MPl

2

a(t)! eH t

VH	  acts	  as	  
cosmological	  
constant	  term	  	  

EXPONENTIAL	  EXPANSION	  
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FIG. 3: The SM Higgs potential (left) and the quartic Higgs coupling (right) as functions of the

renormalization scale µ, for mH = 126 GeV and different values of mt(mt), increasing from top

to bottom by the amount indicated by the labels. The dashed curve in the right plot shows the

associated value of βλ(µ). The other input parameters are fixed at the central values discussed

in the previous section.

for the same parameter values; there is only a single dashed curve because βλ(µ) mildly

depends on mt(mt) if the latter is in the range 161 − 163 GeV. Let call µβ the renor-

malization scale such that βλ(µβ) = 0. Clearly, only in the case of two degenerate vacua

the conditions βλ(µβ) = 0 and λ(µβ) = 0 are simultaneously met. For a shallow false

minimum we instead have βλ(µβ) = 0 and λ(µβ) = O(10−5), as already mentioned.

In fig. 4 we show how µβ depends on mt(mt), for various values of mH . It is remarkable

that µβ is maximized and nearly constant for the values of mt(mt) for which λ(µ) is very

small.
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FIG. 4: The scale µβ as a function of mt(mt) and for different values of mH , as indicated by

the labels.

because	  	  
	  

there	  is	  no	  slow	  roll	  in	  general	  

Small field: 
  

does not work in the “pure” 
SM (without any addition) 

(φ < MPl)



With an inflection point  
slow roll can occur … 
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[see e.g. G.Isidori V.Rychkov A.Strumia N.Tetradis, 0712.0242] 
 …but there are not enough e-folds for inflation  

Small field: 
  

does not work in the “pure” 
SM (without any addition) 

(φ < MPl)
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There would arise possibilities that the SM Higgs field is the inflaton  
if we loose the above assumptions 

These conclusions holds for a rolling Higgs having  
canonical kinetic term and minimal coupling to gravity 



These conclusions holds for a rolling Higgs having  
canonical kinetic term and minimal coupling to gravity 
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There would arise possibilities that the SM Higgs field is the inflaton  
if we loose the above assumptions 

Flatten the Higgs potential:  
      e.g. via non-minimal gravitational coupling  

(new inflation = slow roll) 
1 

+ξ h2 



These conclusions holds for a rolling Higgs having  
canonical kinetic term and minimal coupling to gravity 

S = d 4x !g M 2

2
R! 1

2
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(h2 ! v2 )2
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There would arise possibilities that the SM Higgs field is the inflaton  
if we loose the above assumptions 

The Higgs is not rolling but is trapped in  
a false vacuum (=old inflation); 

another slow rolling field acts as curvaton  
and as a clock to end inflation 

2 

+curvaton 



The NEW DATA from BICEP2 

17 March 2014:  
 

detected B-modes (curl component) of the polarization of the CMB at the level of    

    
                               r = 0.20−0.05  
 

arXiv:1403.3985 

+0.07 tensor-to-scalar 
ratio of amplitudes 

disfavouring r = 0 at the level of 7σ (5.9σ after foreground subtraction) 



In a model were slow-roll is applicable   

 0.20−0.05 
+0.07 

V1/4 ≈ 2 x 1016 GeV 

Pl 



	  
EXAMPLE	  1	  

	  
Non-‐minimal	  coupling	  Higgs	  InflaPon	  

(new	  inflaPon	  type)	  
	  



F.Bezrukov M.Shaposhnikov, 0710.3755 

A.O.Barvinsky A.Kamenshchik C.Kiefer A.Starobinsky C.Steinwachs 
0809.2104, 0910.1041  

“The Standard Model Higgs boson as the inflaton”  Phys.Lett. B659 (2008) 703 
 
Following papers also in collaboration with Gorbunov, Magnin, Sibiryakov, Kalmykov, Kniehl 
0812.4950, 0904.1537,1008.5157, 1111.4397, 1205.2893  

A. De Simone, M.P. Hertzberg F. Wilczek, 0812.4946  

L.A. Popa, N. Mandolesi, A. Caramete, C. Burigana, 0907.5558, 0910.5312, 1009.1293 
 

etc 

 H.M. Lee G.Giudice O. Lebedev, 1010.1417, 1105.2284  

H.M. Lee 1301.1787  

BIBLIOGRAPHY 

1403.6078 

After BICEP2, see e.g. 

F.Bezrukov M.Shaposhnikov,  
Y.Hamada H.Kawai K.Oda S.C.Park  1403.5043 
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Upon conformal transformation 
to Einstein frame and 
redefinition of Higgs field to 
have canonical kinetic term 

SE =

�
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−ĝ

�
−M2

2
R̂+

∂µχ∂µχ

2
− VE(χ(h))

�

Non minimal coupling 
of Higgs with gravity 

SM Higgs potential 

Higgs potential 
flattened below 
 Planck scale 

λ
4h

4

(1 + ξh2
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A	  configuraPon	  more	  (or	  as	  stable	  as)	  an	  
inflecPon	  point	  is	  necessary	  for	  Higgs	  inflaPon	  

via	  non-‐minimal	  gravitaPon	  couplings	  

φH	  

V(φH)	  

plateau	  for	  
slow-‐roll	  

M
!

M

stay	  on	  RED	  BAND	  



1403.6078	  F.Bezrukov M.Shaposhnikov,  

A	  non-‐minimal	  coupling	  of	  about	  10	  might	  do	  the	  job	  
(for	  quite	  low	  mt	  and	  quite	  high	  mH	  )	  



	  
EXAMPLE	  2	  

	  
Shallow	  false	  minimum	  	  

(old	  inflaPon	  type	  revisited)	  
	  

I.M.	  A.Notari,	  	  Phys.Rev.	  D85	  (2012)	  123506	  [1112.2659],	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Phys.Rev.LeR.	  108	  (2012)	  191302	  [1112.5430],	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  JCAP	  1211	  (2012)	  031	  	  [1204.4155]	  	  

BIBLIOGRAPHY	  

I.M.,	  PRD	  1403.5244	  Ader	  BICEP2,	  see	  e.g.	  



InflaPon	  ends	  thanks	  to	  some	  other	  mechanism	  

V(φH)	  

φH	  MPl	  

	  assume	  that	  the	  Universe	  started	  with	  
the	  Higgs	  trapped	  in	  this	  false	  vacuum	  

In	  this	  scenario	  the	  Higgs	  cannot	  be	  the	  curvaton	  	  



V(φH)	  

φH	  MPl	  

This	  scenario	  required	  mH	  =	  123-‐130	  GeV	  (before	  Higgs	  discovery)	  NB	  1.	  

	  assume	  that	  the	  Universe	  started	  with	  
the	  Higgs	  trapped	  in	  this	  false	  vacuum	  
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We now turn to the determination of the points in the plane [mH ,mt(mt)] allowing for

the existence of a second minimum degenerate with the electroweak one. These points

belong to a line separating the stability from the metastability region, see fig. 5: in the

lower part of the plot λ(µ) is always positive, while in the upper part it becomes negative

before reaching the Planck scale. The configuration of a shallow false minimum belongs

to the stability region, but the associated points are so close to the transition line that

they could not be distinguished by eye.
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FIG. 5: The solid (black) line marks the points in the plane [mH ,mt(mt)] where a second

vacuum, degenerate with the electroweak one, is obtained just below the Planck scale. The

(red) diagonal arrow shows the effect of varying α3(mZ) = 0.1196±0.0017; the (blue) horizontal

one shows the effect of varying µλ (the matching scale of λ) from mZ up to 2mH . The shaded

(yellow) vertical region is the 2σ ATLAS [1] and CMS [2] combined range, mH = 125.65 ± 0.85

GeV; the shaded (green) horizontal region is the range mt(mt) = 163.3± 2.7GeV, equivalent to

mt = 173.3± 2.8 GeV [15].

The transition line of fig. 5 was obtained with the input parameter values discussed in

the previous section and by matching the running Higgs quartic coupling at mH . Clearly,

it is also important to estimate the theoretical error associated to experimental ranges of

the input parameters and the one associated to the matching procedure. To illustrate this,

we consider in particular the point on the transition line associated to the value mH = 126

GeV; for such point, λ and βλ both vanish at a certain scale µβ (see fig. 4). The arrows

show how, if some inputs or the matching scale are changed, the position of this point
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163.3	  ±	  2.7	  

Before	  LHC…	  

Shallow	  false	  
minimum	  Higgs	  
inflaPon	  requires	  

stability	  

PredicPon	  that	  mH	  	  is	  in	  the	  range	  123-‐130	  GeV	  	  appeared	  on	  the	  arXiv	  before	  
LHC	  3σ announcement	  [I.M.	  A.Notari	  1112.2659]	  

LHC	  



V(φH)	  

φH	  MPl	  

Clean	  predicPon	  for	  r	  	  (ns	  is	  instead	  model	  dependent)	  

	  assume	  that	  the	  Universe	  started	  
with	  the	  Higgs	  in	  this	  false	  vacuum	  

This	  scenario	  required	  mH	  =	  123-‐130	  GeV	  (before	  Higgs	  discovery)	  NB	  1.	  

NB	  2.	  



2!10"9 # $R
2 =

2
3! 2

1
r
VH (µ0 )
M 4

determined	  by	  mH	  	  
(mt	  choosen	  in	  order	  to	  
have	  false	  minimum)	  	  

BICEP2	  can	  be	  
accomodated	  
within	  2σ:	  
large	  mH	  	  
small	  mt	  

small	  α3(mZ)	  

IM,	  PRD	  1403.5244	  



IM	  Notari,	  arXiv:1112.2659,	   1204.4155	  
A	  model	  in	  scalar-‐tensor	  gravity	   &	  a	  model	  with	  hybrid	  inflaPon	  

KO	  because	  or	  r	  and	  nS	  
[see	  e.g.	  Fairbairn	  et	  al	  	  1403.7483]	  

Realiza+ons	  of	  the	  scenario:	  

V(φH)	  

φH	  MPl	  

	  assume	  that	  the	  Universe	  started	  
with	  the	  Higgs	  in	  this	  false	  vacuum	  

Not	  saPsfactory	  but	  maybe…	  



worth	  to	  develop	  more	  models	  	  to	  beRer	  explore	  
the	  idea	  of	  shallow	  false	  minimum	  Higgs	  inflaPon	  

IM,	  PRD	  1403.5244	  

Anyway…	  	  
	  

the	  numerical	  
concordance	  	  
is	  so	  intriguing	  



CONCLUSIONS	  
1)  Stability/Metastability	  of	  the	  Higgs	  potenPal	  in	  the	  SM:	  	  
	  	  	  	  	  	  	  	  calls	  for	  more	  precise	  measurement	  of	  top	  mass	  	  

2)	  SM	  Higgs	  inflaPon	  models:	  
	  	  	  	  	  	  seem	  promising	  and	  calls	  for	  confirmaPon	  of	  r	  
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	  	  	  	  	  	  	  	  calls	  for	  more	  precise	  measurement	  of	  top	  mass	  	  

2)	  SM	  Higgs	  inflaPon	  models:	  
	  	  	  	  	  	  seem	  promising	  and	  calls	  for	  confirmaPon	  of	  r	  

The	  measured	  value	  	  
of	  the	  Higgs	  boson	  mass	  is	  intriguing!!	  	  



backup	  



Main	  difficulty	  of	  the	  false	  vacuum	  scenario:	  
provide	  a	  graceful	  exit	  from	  inflaPon	  

	  A	  graceful	  exit	  would	  require	  
that	  a{er	  some	  Pme	  

There	  are	  enough	  e-‐folds	  of	  inflaPon	  
…but	  an	  insufficient	  number	  of	  bubbles	  is	  produced	  inside	  a	  Hubble	  horizon…	  

H4	  >>	  	  Γ	  
nucleaPon	  rate	  per	  	  
unit	  Pme	  and	  volume	  

To	  end	  inflaPon	  the	  field	  have	  to	  tunnel	  by	  nucleaPng	  bubbles	  	  
which	  eventually	  collide	  and	  reheat	  the	  Universe.	  	  
If	  

But	  in	  standard	  gravity	  as	  both	  are	  Pme-‐independent:	  

H4	  ≤	  	  Γ	  

That’s	  why	  old	  inflaPon	  [Guth	  ‘80]	  was	  abandoned	  



	  A	  graceful	  exit	  would	  require	  
that	  a{er	  some	  Pme	  

H4	  >>	  	  Γ	  
nucleaPon	  rate	  per	  	  
unit	  Pme	  and	  volume	  

H4	  ≤	  	  Γ	  

Time	  dependent	  H	  is	  possible	  e.g.	  in	  a	  scalar-‐tensor	  theory	  of	  gravity	  	  
C.Mathiazhagan	  V.B.Johri,	  1984	  
D.La	  P.J.Steinhardt,	  1989	  
P.J.Steinhardt	  F.S.AcceRa,	  1990	  

For	  exponenPal	  expansion	  followed	  by	  power-‐low	  

For	  power-‐low	  expansion	  
(extended	  	  or	  hyperextended	  inflaPon)	  

T.Biswas	  F.Di	  Marco	  A.Notari,	  2006	  

To	  end	  inflaPon	  the	  field	  have	  to	  tunnel	  by	  nucleaPng	  bubbles	  	  
which	  eventually	  collide	  and	  reheat	  the	  Universe.	  	  
If	  

Main	  difficulty	  of	  the	  false	  vacuum	  scenario:	  
provide	  a	  graceful	  exit	  from	  inflaPon	  

There	  are	  enough	  e-‐folds	  of	  inflaPon	  
…but	  an	  insufficient	  number	  of	  bubbles	  is	  produced	  inside	  a	  Hubble	  horizon…	  



A	  new	  scalar	  φ	  decoupled	  from	  the	  SM	  	  
but	  coupled	  to	  gravity	  
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V̄ (Φ) = V (χ0)

�
1− 2γn

�
Φ

M

�n

+ ...

�Einstein	  frame	  potenPal	  is	  dominated	  by	  the	  Higgs	  field	  

à exponenPal	  inflaPon	  unPl	  φ	  becomes	  large	  
	  	  	  	  	  and	  H	  decreases.	  Power	  low	  inflaPon	  stage	  	  
	  	  	  	  	  then	  allows	  Higgs	  tunnelling	  with	  efficient	  	  
	  	  	  	  	  bubble	  producPon	  and	  collisions	  	  	  

φ	  

H	  

V(φ)	  



Quantum	  fluctuaPons	  in	  	  φ generate	  the	  spectrum	  of	  density	  perturbaPons	  with	  
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Quantum	  fluctuaPons	  in	  	  φ generate	  the	  spectrum	  of	  density	  perturbaPons	  with	  

nS ≈ 1− n− 1

n− 2

2

N̄

n=6	  

Marginally	  
consistent	  with	  

BICEP2	  

PLANCK	  

BICEP2	  



Quantum	  fluctuaPons	  in	  	  φ generate	  the	  spectrum	  of	  density	  perturbaPons	  with	  

nS ≈ 1− n− 1

n− 2

2

N̄

n=8	  

PLANCK	  

BICEP2	  

Marginally	  
consistent	  with	  

BICEP2	  



	  Effect	  of	  neutrinos	  on	  the	  shape	  
of	  the	  Higgs	  potenPal	  

3)	  	  



Type	  I	  seesaw	  Dirac	  Yukawa	  interacPons	  neutrinos	  could	  destabilize	  V…	  
[Casas	  Ibarra	  Quiros,	  Okada	  Shafi,	  Giudice	  Strumia	  RioRo,	  Rodejohann	  Zhang,	  etc	  ]	  



Type	  I	  seesaw	  Dirac	  Yukawa	  interacPons	  neutrinos	  could	  destabilize	  V…	  
[Casas	  Ibarra	  Quiros,	  Okada	  Shafi,	  Giudice	  Strumia	  RioRo,	  Rodejohann	  Zhang,	  etc	  ]	  

µ = Mν

µ < Mν

µ > Mν

so	  that	  	  one	  matches	  with	  light	  neutrino	  masses	  

The	  larger	  is	  hν	  
the	  larger	  is	  Mν	




Requirement	  of	  stability	  of	  the	  Higgs	  potenPal	  
	  à	  hν not	  too	  large	  	  	  	  à	  “upper	  bound”	  on	  Mν	
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the atmospheric oscillations. This is supported by the following argument.

It is well known that the β-function of the Higgs quartic coupling is affected only

if hν(µ), the Yukawa coupling of the Dirac mass term (defined only for µ ≥ Mν), is

large enough. As the top Yukawa coupling, also the neutrino Yukawa coupling induces a

suppression of the Higgs quartic coupling at high energy. By increasing Mν and mν , the

neutrino Yukawa coupling at the threshold scale Mν also increases:

hν(Mν) = 2

�
mν(Mν)Mν

v2
. (12)

This justifies that the fact that we equate mν to the the atmospheric mass scale, about

0.06 eV, which is the lowest possible value for the heaviest among the three light neu-

trinos. In addition, two other Majorana neutrinos with masses lighter than mν can be

accommodated via the seesaw but, if their right-handed neutrinos are lighter than Mν ,

the associated Dirac Yukawa couplings are naturally expected to be smaller, and their

effect on λ(µ) negligible.

In Appendix B we provide the additional terms (with respect to the pure SM) for the

relevant β-functions, above and below the scale Mν .

Since the effect of hν is a suppression of λ, a configuration with a stable electroweak

vacuum in the SM, could be rendered metastable because of the addition of the seesaw

interaction. For a fixed value of mH , one can find the upper bound on Mν following

from the requirement that the electroweak vacuum is not destabilized. As shown in fig. 8

for mH = 126 GeV (but similar upper bounds are obtained in the whole experimental

mH�126 GeV

160.5 161.0 161.5 162.0 162.5 163.0

5.0� 1013
1.0� 1014
1.5� 1014
2.0� 1014
2.5� 1014
3.0� 1014

mt�mt� �GeV�

M
Ν
�GeV

�

FIG. 8: Upper bound on Mν as a function of the running top mass, following from the require-

ment that the electroweak vacuum is not destabilized because of the inclusion of the seesaw, for

mH = 126 GeV. The shaded region is obtained by varying α3(mZ) in its 1σ range.

E.g.	  :	  assume	  one	  generaPon	  giving	  mν=0.06	  eV	  
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range of mH), such upper bound strongly depends on the top mass3 and is affected by an

uncertainty which is mainly due to α3(mZ) (shaded region). The smaller the top mass

is, the more the configuration is stable and the less stringent is the Mν upper bound,

Mν � 3 × 1014 GeV. But increasing the top mass, the electroweak vacuum becomes less

stable and the upper bound on Mν becomes accordingly more and more stringent.

Let consider in particular the upper bound on Mν needed to avoid destabilization of an

inflection point configuration, as the one depicted via the dashed line in fig. 9. Notice that

an inflection point becomes a not so shallow local second minimum if Mν ∼ 1011 GeV and

that electroweak vacuum destabilization is avoided only if the condition Mν � 2 × 1011

GeV is satisfied. The latter bound might be relevant for models of inflation based on the

SM shallow false minimum [7, 17, 18]; note however that it is well compatible with the

thermal leptogenesis mechanism to explain matter-antimatter asymmetry, for which the

lower bound on the lightest Majorana neutrino is about 5× 108 GeV [45].

Clearly, the neutrino Yukawa coupling yν is not the only additional term beyond the

SM capable of modifying the running of λ at high energy. Always in the context of type I

seesaw, in the case that the vacuum expectation value of a singlet scalar field S (violating

the lepton number by two units) is actually at the origin of the right-handed Majorana

neutrino mass, the S couplings induce an enhancement of λ, thus helping the stability of

3�1017 1018
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3�1015

1016

3�1016

Μ �GeV�

V
�Μ�1�4
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�

MΝ�3�1011GeV
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no seesaw

mH�126 GeV

FIG. 9: The Higgs potential as function of the renormalization scale, for mH = 126 GeV and a

value of the top mass leading to an inflection point configuration in the SM case (dashed curve).

The lower curves display the effect of adding the seesaw, with three increasing values of Mν

from top to bottom (solid curves).

3
This dependence was not considered in the previous literature.

IM	  arXiv:1209.0393	  	  

The	  “upper	  bound”	  is	  even	  more	  stringent	  if	  one	  does	  not	  want	  to	  waste	  	  
an	  inflecPon	  point	  configuraPon	  (interesPng	  for	  inflaPon)	  


