$\mathcal{N}\mathsf{MSSM}\ \mathcal{H}\mathsf{iggs}\ \mathcal{B}\mathsf{oson}\ \mathcal{S}\mathsf{earch}\ \mathsf{at}\ \mathsf{the}\ \mathcal{H}\mathsf{igh}\text{-}\mathcal{E}\mathsf{nergy}\ \mathcal{LHC}$

Milada Margarete Mühlleitner (KIT) Coll. with Steve King, Roman Nevzorov and Kathrin Walz

SUSY 2014 University of Manchester 21-26 July 2014

- Investigation of properties of scalar particle:
 - * Mass m, Total Width Γ

- * Couplings to SM particles $g_{HXX} \sim m_X$
- * Spin and Parity Quantum Numbers J^P (CP violation?)

* Trilinear and Quartic Higgs Self-Coupling \rightsquigarrow Higgs Potential

• Investigation of properties of scalar particle: ~> Higgs Boson

\mathcal{N} obel \mathcal{P} rize in \mathcal{P} hysics 2013

\mathcal{N} obel \mathcal{P} rize in \mathcal{P} hysics 2013

The \mathcal{NMSSM} Higgs Sector

• Next-to-Minimal Supersymmetric Extension of the SM: NMSSM

Fayet; Kaul eal; Barbieri eal; Dine eal; Nilles eal; Frere eal; Derendinger eal; Ellis eal; Drees; Ellwanger eal; Savoy; Elliott eal; Gunion eal; Franke eal; Maniatis; Djouadi eal; Mahmoudi eal; ...

- SUSY Higgs Sector: at least 2 complex Higgs doublets, NMSSM: plus complex singlet field ~~
- Solution of the μ -problem: μ must be of $\mathcal{O}(\text{EWSB scale})$ Kim,Nilles μ generated dynamically through the VEV of scalar component of an additional chiral superfield field \hat{S} : $\mu = \lambda \langle S \rangle$ from: $\lambda \hat{S} \hat{H}_u \hat{H}_d$
- Enlarged Higgs and neutralino sector: 2 complex Higgs doublets \hat{H}_u, \hat{H}_d , 1 complex singlet \hat{S}

7 Higgs bosons: $H_1, H_2, H_3, A_1, A_2, H^+, H^-$ 5 neutralinos: $\tilde{\chi}_i^0$ (i = 1, ..., 5)

• Significant changes of Higgs boson phenomenology

\mathcal{NMSSM} $\mathcal{H}iggs$ $\mathcal{M}ass$ and \mathcal{LHC} $\mathcal{R}esults$

• Vast literature on NMSSM Higgs of $\sim 125\text{-}126$ GeV

Hall eal; Ellwanger; Gunion eal; King,MMM,Nevzorov; Albornoz Vasquez eal; Cao eal; Gabrielli eal; Ellwanger, Hugonie; Kang eal; Cheung eal; Jeong eal; Hardy eal; Kim eal; Arvanitaki eal; Cheng eal; Bélanger eal; Kowalska eal; Badziak eal; Moretti eal: Choi eal; Munir eal; Barbieri eal; Beskidt eal; Berg eal; Gherghetta eal; Cerdeno eal; Das eal; Christensen eal; Bhattacherjee eal; Guo eal; ...

• Compatibility of NMSSM Higgs mass with LHC Searches:

 \star Upper mass bounds + corrections to the MSSM, NMSSM Higgs boson mass:

 $\begin{array}{ll} \text{MSSM:} & m_h^2 \approx M_Z^2 \cos^2 2\beta + \Delta m_h^2 \\ \\ \text{NMSSM:} & m_h^2 \approx M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \Delta m_h^2 \end{array}$

 $\Rightarrow M_H \approx 126$ requires:

MSSM: $\Delta m_h \approx 85 \text{ GeV} (\tan \beta \text{ large}) \Rightarrow \text{large corrections} \rightsquigarrow \text{fine-tuning}$ NMSSM: $\Delta m_h \approx 55 \text{ GeV} (\lambda = 0.7, \tan \beta = 2)$

 \Rightarrow NMSSM requires less fine-tuning

Hall,Pinner,Ruderman; Ellwanger; Arvanitaki,Villadoro; King,MMM,Nevzorov; Kang,Li,Li; Cao,Heng,Yang,Zhang,Zhu

\mathcal{NMSSM} $\mathcal{H}iggs$ $\mathcal{D}iscovery$ at the \mathcal{LHC}

• Present Status:

Higgs signal at 125 GeV No BSM Higgs discovered yet. True?

• Could be that we already discovered NMSSM Higgs bosons!

Higgs signal at 125 GeV is built up by two degenerate Higgs bosons.

• What about the MSSM?

Two light MSSM CP-even Higgs bosons \iff light CP-odd A, relatively light H^{\pm}

light $M_{H^{\pm}}$ excluded ATLAS-CONF-2012-011 and 2013-090, CMS-HIG-12-052

M.M.Mühlleitner, 22 July 2014, SUSY 2014, University of Manchester

King,Nevzorov,MMM,Walz

(Point ID 4617)	Scenario		
$M_{H_1}, M_{H_2}, M_{H_3}$	124.9 GeV	126.6 GeV	538 GeV
M_{A_1}, M_{A_2}	92 GeV	541 GeV	
$ S_{H_1h_s} ^2, S_{H_2h_s} ^2$	0.69	0.29 (singl	et admixture)
$\mu_{ au au}$, μ_{bb}	0.96	0.96	
μ_{ZZ} , μ_{WW} , $\mu_{\gamma\gamma}$	0.90	1.08	1.02
$ aneta$, λ , κ	1.93	0.67	0.13
A_λ , A_κ , μ_{eff}	559 GeV	301 GeV	233 GeV
A_t , A_b , $A_ au$	1062 GeV	349 GeV	-1753 GeV
M_1 , M_2 , M_3	887 GeV	265 GeV	1130 GeV
$M_{Q_3} = M_{t_R}$, M_{b_R}	763 GeV	1 TeV	
$M_{L_3}=M_{ au_R}$, $M_{ m SUSY}$	700 GeV	1 TeV	

 $M_{H^\pm}=529~{
m GeV}$, $m_{{ ilde t}_1}=694~{
m GeV}$, $m_{{ ilde t}_2}=847~{
m GeV}$

King,Nevzorov,MMM,Walz

(Point ID 4617)	Scenario		
$M_{H_1}, M_{H_2}, M_{H_3}$	124.9 GeV	126.6 GeV	538 GeV
M_{A_1}, M_{A_2}	92 GeV	541 GeV	
$ S_{H_1h_s} ^2, S_{H_2h_s} ^2$	0.69	0.29 (singl	et admixture)
$\mu_{ au au}$, μ_{bb}	0.96	0.96	
μ_{ZZ} , μ_{WW} , $\mu_{\gamma\gamma}$	0.90	1.08	1.02
$\tan eta$, λ , κ	1.93	0.67	0.13
A_λ , A_κ , μ_{eff}	559 GeV	301 GeV	233 GeV
A_t , A_b , $A_ au$	1062 GeV	349 GeV	-1753 GeV
M_1 , M_2 , M_3	887 GeV	265 GeV	1130 GeV
$M_{Q_3} = M_{t_R}$, M_{b_R}	763 GeV	1 TeV	
$M_{L_3}=M_{ au_R}$, $M_{ m SUSY}$	700 GeV	1 TeV	

Largest H_3, A_2 BR: $H_3, A_2 \rightarrow t\bar{t}, \tilde{\chi}_1^0 \tilde{\chi}_1^0, \tilde{\chi}_1^+ \tilde{\chi}_1^-, H_3 \rightarrow ZA_1, A_2 \rightarrow A_1H_2$

King,Nevzorov,MMM,Walz

(Point ID 4617)	Scenario		
$M_{H_1}, M_{H_2}, M_{H_3}$	124.9 GeV	126.6 GeV	538 GeV
M_{A_1}, M_{A_2}	92 GeV	541 GeV	
$ S_{H_1h_s} ^2, S_{H_2h_s} ^2$	0.69	0.29 (singl	et admixture)
$\mu_{ au au}$, μ_{bb}	0.96	0.96	
μ_{ZZ} , μ_{WW} , $\mu_{\gamma\gamma}$	0.90	1.08	1.02
$\tan eta$, λ , κ	1.93	0.67	0.13
A_λ , A_κ , μ_{eff}	559 GeV	301 GeV	233 GeV
A_t , A_b , $A_ au$	1062 GeV	349 GeV	-1753 GeV
M_1 , M_2 , M_3	887 GeV	265 GeV	1130 GeV
$M_{Q_3} = M_{t_R}$, M_{b_R}	763 GeV	1 TeV	
$M_{L_3} = M_{\tau_R}, \ M_{\rm SUSY}$	700 GeV	1 TeV	

Resolve degenerate signal: double ratios of signal rates ← high luminosity [Gunion,Kraml,Jiang]

King,Nevzorov,MMM,Walz

(Point ID 4617)	Scenario		
$M_{H_1}, M_{H_2}, M_{H_3}$	124.9 GeV	126.6 GeV	538 GeV
M_{A_1}, M_{A_2}	92 GeV	541 GeV	
$ S_{H_1h_s} ^2, S_{H_2h_s} ^2$	0.69	0.29 (singl	et admixture)
$\mu_{ au au}$, μ_{bb}	0.96	0.96	
μ_{ZZ} , μ_{WW} , $\mu_{\gamma\gamma}$	0.90	1.08	1.02
$ aneta$, λ , κ	1.93	0.67	0.13
A_λ , A_κ , μ_{eff}	559 GeV	301 GeV	233 GeV
A_t , A_b , $A_ au$	1062 GeV	349 GeV	-1753 GeV
M_1 , M_2 , M_3	887 GeV	265 GeV	1130 GeV
$M_{Q_3} = M_{t_R}$, M_{b_R}	763 GeV	1 TeV	
$M_{L_3} = M_{\tau_R}, \ M_{\rm SUSY}$	700 GeV	1 TeV	

Resolve degenerate signal: test properties of event rate matrix — high luminosity [Grossman,Surujon,Zupan]

$\mathcal{I}nvestigation of \mathcal{NMSSM} \mathcal{D}iscovery \mathcal{P}rospects - \mathcal{S}can$

Mixing angle $\tan\beta$ and NMSSM couplings λ , κ :

 $1 \le \tan \beta \le 30$, $0 \le \lambda \le 0.7$, $-0.7 \le \kappa \le 0.7$

with perturbativity requirement

$$\sqrt{\lambda^2 + \kappa^2} \le 0.7$$

Soft SUSY breaking trilinear NMSSM couplings and μ_{eff} :

$$-2 \,\, {\sf TeV} \le A_\lambda \le 2 \,\, {\sf TeV} \;,\; -2 \,\, {\sf TeV} \le A_\kappa \le 2 \,\, {\sf TeV} \;,\; -1 \,\, {\sf TeV} \le \mu_{\sf eff} \le 1 \,\, {\sf TeV}$$

Remaining Parameters:

$$-2 \text{ TeV} \leq A_U, A_D, A_L \leq 2 \text{ TeV}$$

 $600~{\rm GeV} \leq M_{\tilde{t}_R} = M_{\tilde{Q}_3} \leq 3~{\rm TeV}~,~600~{\rm GeV} \leq M_{\tilde{\tau}_R} = M_{\tilde{L}_3} \leq 3~{\rm TeV}~,~M_{\tilde{b}_R} = 3~{\rm TeV}$

$$M_{\tilde{u}_R,\tilde{c}_R} = M_{\tilde{d}_R,\tilde{s}_R} = M_{\tilde{Q}_{1,2}} = M_{\tilde{e}_R,\tilde{\mu}_R} = M_{\tilde{L}_{1,2}} = 3 \,\, {\rm TeV}$$

 $100~{\rm GeV} \le M_1 \le 1~{\rm TeV}\;,\; 200~{\rm GeV} \le M_2 \le 1~{\rm TeV}\;,\; 1.3~{\rm TeV} \le M_3 \le 3~{\rm TeV}$

\mathcal{NMSSM} Scan

• Conditions on the parameter scan:

- * At least one CP-even Higgs boson $H_i \equiv h$ with: 124 GeV $\lesssim M_h \lesssim 127$ GeV
- * Compatibility with μ_{XX}^{exp} $(X = b, \tau, \gamma, W, Z)$:
- \ast Relic density $\Omega_c h^2$ below PLANCK result

 $|\mu_{XX}^{\rm scan}(h)-\mu_{XX}^{\rm exp}|\leq 2\sigma$

 $(\Omega_c h^2)^{\rm NMSSM} \le 0.1187 \pm 0.0017 \; [{\rm PLANCK}]$

Constraints from low-energy observables, from LEP, Tevatron and LHC searches [NMSSMTools]

• Signal can be superposition of two Higgs boson rates close in mass: h and $\Phi = H_i, A_j$

$$\mu_{XX}(h) \equiv R_{\sigma}(h) R_{XX}^{BR}(h) + \sum_{\substack{\Phi \neq h \\ |M_{\Phi} - M_h| \leq \delta}} R_{\sigma}(\Phi) R_{XX}^{BR}(\Phi) F(M_h, M_{\Phi}, d_{XX})$$

 δ : mass resolution in the respective XX final state $F(M_h, M_{\Phi}, d_{XX})$: Gaussian weighting function d_{XX} : experimental resolution of final state XX [NMSSMTools] Based on: ATLAS-CONF-2013-034; CMS-PAS-HIG-13-005; combination à la Espinosa, MMM, Grojean, Trott

channel	best fit value	$2 \times 1\sigma$ error
$VH \rightarrow Vbb$	0.97	± 1.06
$H\to\tau\tau$	1.02	± 0.7
$H \to \gamma \gamma$	1.14	± 0.4
$H \rightarrow WW$	0.78	± 0.34
$H \rightarrow ZZ$	1.11	± 0.46

• Comparison of Branching Ratios and Decay Widths with: NMSSMCALC

Baglio, Gröber, MMM, Nhung, Rzehak, Spira, Streicher, Walz [arXiv:1312.4788]

- NMSSMCALC: Fortran package for the calculation in the real & complex NMSSM of the
 - * loop-corrected NMSSM Higgs boson masses at one-loop masses and self-couplings at two-loop: implementation about to be finished
 - \star NMSSM Higgs boson decay widths and branching ratios
- Input and output files feature the SUSY Les Houches Accord (SLHA) Skands eal; Allanach eal
- Decay Widths: extension of HDECAY to the NMSSM Djouadi, Kalinowski, MM, Spira
 - ***** include dominant higher order QCD corrections
 - * down-type leptons: HO SUSY-EW, down-type quarks: SUSY-QCD, bottoms: SUSY-QCD&EW
 - \star off-shell decays into VV (V = Z, W), V+Higgs, Higgs pair, $t\bar{t}$; $H^+ \to t\bar{b}$
 - * real NMSSM: SUSY-QCD to decays into stop, sbottom pairs

http://www.itp.kit.edu/~maggie/NMSSMCALC

NMSSMCALC Calculator of One-Loop Higgs Mass Corrections and of Higgs Decay Widths in the CP-conserving and the CP-violating NMSSM

The program package NMSSMCALC calculates the one-loop corrected Higgs boson masses and the Higgs decay widths and branching ratios within the CP-conserving and the CP-violating NMSSM. The decay calculator is based on an extension of the program HDECAY 6.10 now.

Released by: Julien Baglio, Ramona Gröber, Margarete Mühlleitner, Dao Thi Nhung, Heidi Rzehak, Michael Spira, Juraj Streicher and Kathrin Walz Program: NMSSMCALC version 1.02

When you use this program, please cite the following references:

NMSSMCALC:	Julien Baglio, Ramona Gröber, Margarete Mühlleitner, Dao Thi Nhung, Heidi Rzehak, Michael Spira, Juraj Streicher and Kathrin Walz, in arXiv:1312.4788
One-Loop Masses:	K. Ender, T. Graf, M. Mühlleitner, H. Rzehak, in Phys. Rev. D85 (2012)075024
	T. Graf, R. Gröber, M. Mühlleitner, H. Rzehak, K. Walz, in JHEP 1210 (2012) 122
HDECAY:	A. Djouadi, J. Kalinowski, M. Spira, Comput. Phys. Commun. 108 (1998) 56
An update of HDECAY:	A. Djouadi, J. Kalinowski, Margarete Muhlleitner, M. Spira, in arXiv:1003.1643

Informations on the Program:

- Short explanations on the program are given here.
- To be advised about future updates or important modifications, send an E-mail to nmssmcalc@itp.kit.edu.

SM-like Higgs h around 126 GeV for $0.5 \leq \lambda \leq 0.7$, $\tan \beta \leq 5$ or $\lambda \leq 0.1$, $\tan \beta \geq 10$

$$m_h^2 \approx M_Z^2 \cos^2 2\beta + \frac{\lambda^2 v^2}{2} \sin^2 2\beta + \Delta m_h^2$$

M.M.Mühlleitner, 22 July 2014, SUSY 2014, University of Manchester

\mathcal{D} istributions of A_t and $m_{ ilde{t}_1}$

important Higgs mass corrections emerge from (s)top sector larger (w/ resp to MSSM) tree-level SM-like Higgs mass \rightsquigarrow lighter $m_{\tilde{t}_1}$ can be afforded $270 \text{ GeV} \lesssim m_{\tilde{t}_1} \lesssim 3.1 \text{ GeV}$ also $A_t = 0$ possible

\mathcal{M} ass \mathcal{D} istributions

King, MMM, Nevzorov, Walz

H_i (i=1,2) is the non-SM-like CP-even Higgs boson

 $M_{H_i} \lesssim 115 \text{ GeV} \rightsquigarrow H_1 \text{ non-SM-like}; M_{H_i} \gtrsim 180 \text{ GeV} \rightsquigarrow H_2 \text{ non-SM-like}$ Gaps at 115 GeV $\lesssim M_{H_i} \lesssim 180$ GeV and 115 GeV $\lesssim M_{A_1} \lesssim 130$ GeV due to LHC exclusions Very few points for $M_{H_i}, M_{A_1} \lesssim 62 \text{ GeV} \leftarrow \text{SM-like Higgs decays into } H_i, A_1 \rightsquigarrow \text{reduced } \mu \text{ values}$

\mathcal{M} ass \mathcal{D} istributions

King, MMM, Nevzorov, Walz

H_i (i=1,2) is the non-SM-like CP-even Higgs boson

 $M_{H_i} \lesssim 115 \text{ GeV} \rightsquigarrow H_1 \text{ non-SM-like}; M_{H_i} \gtrsim 180 \text{ GeV} \rightsquigarrow H_2 \text{ non-SM-like}$ $300 \text{ GeV} \lesssim M_{H_3}, M_{A_2} \lesssim \mathcal{O}(\text{TeV})$

- ▷ CMS, CMS-HIG-12-004: $\sigma BR(pp \rightarrow a \rightarrow \mu^+\mu^-)$, $5.5 \le m_{\mu\mu} \le 14$ GeV, excluded: 1.5 - 7.5 pb at 95% CL ($\sqrt{s} = 7$ TeV, $\int \mathcal{L} = 1.3$ fb⁻¹)
- ▷ ATLAS, ATLAS-CONF-2012-079: $H \rightarrow aa \rightarrow \gamma\gamma + \gamma\gamma$ for $M_H = 110 150$ GeV, $M_a = 100, 200, 400$ MeV; $\sigma \text{ BR} = 0.1$ pb excluded in 115 - 140 GeV, 0.2 pb outside $(\sqrt{s} = 7 \text{ TeV}, \int \mathcal{L} = 4.9 \text{ fb}^{-1})$
- \triangleright CMS, CMS-PAS-HIG-13-032: $X \rightarrow HH \rightarrow (\gamma\gamma)(b\bar{b})$, $260 \leq m_X \leq 1100$ GeV, $\sigma BR \approx 0.4 4$ fb excluded at 95% CL ($\sqrt{s} = 8$ TeV, $\int \mathcal{L} = 19.7$ fb⁻¹)

▷ ATLAS, 1406.5053: resonant and non-resonant pair production in $hh \rightarrow (\gamma\gamma)(b\bar{b})$, $260 \le m_h \le 500 \text{ GeV (SM } h)$, non-resonant $\sigma \text{ BR} = 2.2 \text{ pb upper limit}$, resonant $\sigma \text{BR} = 0.8 - 3.5 \text{ pb excluded at 95%CL } (\sqrt{s} = 8 \text{ TeV}, \int \mathcal{L} = 20 \text{ fb}^{-1})$

Experimental Situation

ATLAS, 1406.5053

CMS-PAS-HIG-13-032

$\mathcal{D} is covery \ \mathcal{P} rospects \ in \ the \ \mathcal{N} atural \ \mathcal{N} MSSM$

- What scenario could be constrained at 13 TeV?
- Investigate prospects for subspace: Natural NMSSM

 $0.6 \le \lambda \le 0.7 \,, \; -0.3 \le \kappa \le 0.3 \,, \; 1.5 \le \tan\beta \le 2.5 \,, \; 100 \,\, \mathrm{GeV} \le |\mu_{\mathrm{eff}}| \le 185 \,\, \mathrm{GeV}$

• Features of the NMSSM spectrum:

- * SM-like Higgs boson: $H_2 \equiv h$
- * A_2, H_3 doublet-like
- * A_1, H_1 singlet-like

• Convenient Notation

$$H_2 = h$$
, $H_3 = H$, $A_2 = A$, $H_1 = H_s$, $A_1 = A_s$

• Tree-Level Mass Values

Nevzorov, Miller '04

$$M_H \approx M_A \approx M_{H^{\pm}} \approx \mu_{\text{eff}} \tan \beta$$

$$M_{A_s}^2 + 3M_{H_s}^2 \approx 12 \left(\frac{\kappa}{\lambda}\mu_{\rm eff}\right)^2 + \Delta$$

 $\sqrt{\Delta}\approx 137~{\rm GeV} \longleftarrow$ loop corrections

• Loop-corrected Natural NMSSM Higgs Mass Values

 $230~{\rm GeV} \lesssim M_H, M_A \lesssim 530~{\rm GeV} \ , \ 27~{\rm GeV} \lesssim M_{H_s} \lesssim 117~{\rm GeV} \ , \ 29~{\rm GeV} \lesssim M_{A_s} \lesssim 300~{\rm GeV}$

 \bullet Production Cross Sections for H and A

$$0.8 \; \mathrm{pb} \lesssim \sigma(gg \to H) \lesssim 7.5 \; \mathrm{pb} \;, \quad 0.6 \; \mathrm{pb} \lesssim \sigma(gg \to A) \lesssim 4.5 \; \mathrm{pb}$$

\mathcal{P} roduction \mathcal{C} ross \mathcal{S} ections for H_s, A_s

10² 10³ 10² 10¹ σ_{ggHs}^{13TeV} [pb] σ^{13TeV} [pb] 090⁶ [pb] 10^{1} 10⁰ 10⁻¹ 10⁻² 10⁻¹ 50 100 150 250 80 90 200 20 30 40 50 60 70 100 110 120 130 300 0 M_{H_s} [GeV] M_{A_s} [GeV]

King, MMM, Nevzorov, Walz

Signal Rates for H_s, A_s

$\boldsymbol{\mathcal{A}} \textbf{lternative} ~ \boldsymbol{\mathcal{P}} \textbf{roduction} ~ \boldsymbol{\mathcal{C}} \textbf{hannels}$

- Small direct production rates: ~> alternative production channels
- Higgs-to-Higgs Decays:

$$\sigma(gg \to \phi_i) \times BR(\phi_i \to \phi_j \phi_k) \times BR(\phi_j \to XX) \times BR(\phi_k \to YY)$$

• Higgs-to-Higgs+Gauge-Boson Decays:

$$\sigma(gg \to H) \times BR(H \to ZA_s) , \quad \sigma(gg \to A) \times BR(A \to ZH_s)$$

$\sigma(gg \to H)BR(H \to H_s H_s \to (XX)(YY))$

$\sigma(gg \to H)BR(H \to hH_s \to (XX)(YY))$

 $\sigma(gg \to A)BR(A \to H_s A_s \to (XX)(YY))$

$\sigma(gg \to A)BR(A \to hA_s \to (XX)(YY))$

King, MMM, Nevzorov, Walz

 $\sigma(H)BR(H \to ZA_s \to Z + (XX)), \ \sigma(A)BR(A \to ZH_s \to Z + (XX))$

$\mathcal Discovery\ \mathcal Prospects\ in\ the\ \mathcal Natural\ \mathcal NMSSM$

• Heavy Higgs bosons ${\cal H}$ and ${\cal A}$

With masses $~\lesssim 530$ GeV light enough to be discovered directly

• Singlet-like Higgs bosons H_s and A_s

cross sections large enough for direct discovery

or: if σ_{prod} too small \rightsquigarrow discovery via Higgs-to-Higgs or Higgs-to-Gauge&Higgs decays

(also from decays of SUSY particles might be alternative; not discussed here)

$$H \to H_s H_s , \ H \to h H_s , \ A \to H_s A_s , \ A \to h A_s , \dots$$

$$H \to ZA_s , A \to ZH_s$$

LHC13: Natural NMSSM Scenario confirmed or strongly constrained

• Higgs-to-Higgs Decays

$$\sigma(gg \to \phi_i) \times BR(\phi_i \to \phi_j \phi_k) \times BR(\phi_j \to XX) \times BR(\phi_k \to YY)$$

 \triangleright Interesting for heavier ϕ_i discovery if σ_{prod} large enough and BR into lighter Higgs pairs dominates \triangleright For lighter ϕ_j, ϕ_k interesting production if direct prod strongly suppressed due to singlet nature

• Benchmarks for Higgs-to-Higgs Decays

- A) $H_2 = h, H_1 = H_s, \tan\beta$ small, light spectrum $\lesssim 350$ GeV
- B) $H_1 = h, H_2 = H_s, \tan\beta$ small
- C) $H_1 = h, H_3 = H_s, \tan\beta$ large
- D) $H_2 = h$ decays into lighter Higgs pairs

Benchmark $H_1 = h$ and $\tan \beta$ small

B.1 (Point ID Poi2a)	Scenario		
M_h, M_{H_s}, M_H	124.6 GeV	181.7 GeV	322.6 GeV
M_{A_s}, M_A	72.5 GeV	311.7 GeV	
$ S_{H_2h_s} ^2, P_{A_1a_s} ^2$	0.90	1	
$\mu_{ au au}$, μ_{bb}	1.54	1.01	
μ_{ZZ} , μ_{WW} , $\mu_{\gamma\gamma}$	0.93	0.93	1.54
$ aneta,\lambda,\kappa$	1.9	0.628	0.354
$A_\lambda, A_\kappa, \mu_{eff}$	251.2 GeV	53.8 GeV	158.9 GeV
M_1, M_2, M_3	890 GeV	576 GeV	1919 GeV
A_t, A_b, A_{τ}	1555 GeV	-1006 GeV	-840 GeV
$M_{Q_3} = M_t{}_R, M_{L_3} = M_{ au_R}$, other SSB parameters	1075 GeV	540 GeV	3 TeV

 $\mathsf{BR}(A_s \to \gamma \gamma) = 0.84 \;, \quad \mathsf{BR}(H_s \to A_s A_s) = 0.97 \;, \quad \mathsf{BR}(H \to h H_s) = 0.51$

Benchmark $H_1 = h$ and an eta small

B.1 (Point ID Poi2a)	Decay Rates
$\sigma(ggH_s)$	282.37 fb
$\sigma(ggH_s)BR(H_s\to WW)$	5.09 fb
$\sigma(ggH_s)BR(H_s\to A_sA_s)$	274.75 fb
$\sigma(ggH_s)BR(H_s \to A_sA_s \to b\bar{b} + b\bar{b})$	5.87 fb
$\sigma(ggH_s)BR(H_s \to A_sA_s \to \gamma\gamma + b\bar{b})$	67.33 fb
$\sigma(ggH_s)BR(H_s \to A_sA_s \to \gamma\gamma + \gamma\gamma)$	193.22 fb
$\sigma(ggH)$	3.166 pb
$\sigma(ggH)BR(H \to WW)$	264.73 fb
$\sigma(ggH)BR(H\to ZZ)$	119.52 fb
$\sigma(ggH)BR(H \to b\bar{b})$	297.37 fb
$\sigma(ggH)BR(H\to\tau\tau)$	37.65 fb
$\sigma(ggH)BR(H\to \tilde{\chi}_1^0\tilde{\chi}_1^0)$	383.33 fb
$\sigma(ggH)$ BR $(H \to \tilde{\chi}_1^+ \tilde{\chi}_1^-)$	403.14 fb
$\sigma(ggH)BR(H\to hH_s)$	1.609 pb
$\sigma(ggH)BR(H\to hH_s\to bb+\tau\tau)$	1.44 fb

Benchmark $H_1 = h$ and $\tan \beta$ small

B.1 (Point ID Poi2a)	Decay Rates
$\sigma(ggH)BR(H\to hH_s\to h+A_sA_s\to bb+4\gamma)$	712.47 fb
$\sigma(ggH)BR(H\to hH_s\to h+A_sA_s\to\gamma\gamma+4b)$	248.02 fb
$\sigma(ggH)BR(H \to hH_s \to h + A_sA_s \to \tau\tau + 4\gamma)$	74.60 fb
$\sigma(ggH)BR(H\to hH_s\to h+A_sA_s\to\gamma\gamma+4\tau)$	2.47 fb
$\sigma(ggH)BR(H \to hH_s \to h + A_sA_s \to 6\gamma)$	2.69 fb
$\sigma(ggH)BR(H\to hH_s\to h+A_sA_s\to\tau\tau+\gamma\gamma+b\bar{b})$	49.55 fb
$\sigma(ggH)BR(H\to A_sA_s)$	5.59 fb
$\sigma(ggH)BR(H\to A_sA_s\to 4\gamma)$	3.93 fb
$\sigma(ggA_s)$	0.08 fb
$\sigma(ggA)$	2.51 pb
$\sigma(ggA)BR(A\to\tau\tau)$	14.42 fb
$\sigma(ggA)BR(A \to \tilde{\chi}_1^0 \tilde{\chi}_1^0)$	963.87 fb
$\sigma(ggA)BR(A\to \tilde{\chi}_1^+\tilde{\chi}_1^-)$	273.57 fb
$\sigma(ggA)BR(A\to H_sA_s)$	525.56 fb

\mathcal{B} enchmark $H_1 = h$ and an eta small

B.1 (Point ID Poi2a)	Decay Rates	
$\sigma(ggA)BR(A\to H_sA_s\to A_s+A_sA_s\to 6\gamma)$	301.58 fb	
$\sigma(ggA)BR(A\to H_sA_s\to A_s+A_sA_s\to bb+4\gamma)$	157.64 fb	
$\sigma(ggA)BR(A\to H_sA_s\to A_s+A_sA_s\to 4b+\gamma\gamma)$	27.47 fb	
$\sigma(ggA)BR(A\to H_sA_s\to A_s+A_sA_s\to \tau\tau+4\gamma)$	14.99 fb	
$\sigma(ggA)BR(A \to H_sA_s \to A_s + A_sA_s \to \tau\tau + bb + \gamma\gamma)$	5.22 fb	accessib
$\sigma(ggA)BR(A \to H_sA_s \to A_s + A_sA_s \to 4\tau + \gamma\gamma)$	0.25 fb	λ_{H} $_{A}$ $_{A}$
$\sigma(ggA)BR(A\to hA_s)$	29.96 fb	λ_{HH_sh}
$\sigma(ggA)BR(A\to hA_s\to\gamma\gamma+b\bar{b})$	16.25 fb	$\lambda_{AA_sH_s}$
$\sigma(ggA)BR(A\to hA_s\to\gamma\gamma+\tau\tau)$	1.70 fb	λ_{AA_sh}
$\sigma(ggA)BR(A\to hA_s\to b\bar{b}+b\bar{b})$	2.83 fb	
$\sigma(ggA)BR(A\to ZH_s)$	554.38 fb	
$\sigma(ggA)BR(A\to ZH_s\to bb+A_sA_s\to bb+4\gamma)$	57.36 fb	
$\sigma(ggA)BR(A\to ZH_s\to bb+A_sA_s\to 4b+\gamma\gamma)$	19.99 fb	
$\sigma(ggA)BR(A\to ZH_s\to ZA_sA_s\to bb+\tau\tau+\gamma\gamma)$	6.35 fb	
$\sigma(ggA)BR(A\to ZH_s\to ll/\tau\tau + A_sA_s\to ll/\tau\tau + 4\gamma)$	12.78 fb	
$\sigma(ggA)BR(A \to ZH_s \to ll/\tau\tau + A_sA_s \to ll\tau\tau/4\tau + \gamma\gamma)$	0.42 fb	

e:

\mathcal{W} hat if not all \mathcal{H} iggs \mathcal{B} osons can be discovered?

• If not all NMSSM Higgs bosons are discovered:

Scenario: 3 neutral Higgs bosons discovered, not all of them are scalar \rightsquigarrow

How tell NMSSM from the MSSM?

 \rightsquigarrow exploit sum rules

• Unitarity requirement leads to sum rules for Higgs-gauge and Higgs-Yukawa couplings:

Englert, Freitas, MMM, Plehn, Rauch, Spira, Walz, 1403.7191

$$\frac{G_{H_iVV}}{g_{H^{SM}VV}} \equiv g_{H_iVV} = (\mathcal{R}_{i1}^S \cos\beta + \mathcal{R}_{i2}^S \sin\beta)$$

$$\frac{G_{H_itt}}{g_{H^{SM}tt}} \equiv g_{H_itt} = \frac{\mathcal{R}_{i2}^S}{\sin\beta} , \quad \frac{G_{H_ibb}}{g_{H^{SM}bb}} \equiv g_{H_ibb} = \frac{\mathcal{R}_{i1}^S}{\cos\beta}$$

What if not all Higgs Bosons can be discovered?

• If not all NMSSM Higgs bosons are discovered:

Scenario: 3 neutral Higgs bosons discovered, not all of them are scalar \rightsquigarrow

How tell NMSSM from the MSSM?

 \rightsquigarrow exploit sum rules

• Unitarity requirement leads to sum rules for Higgs-gauge and Higgs-Yukawa couplings:

Englert, Freitas, MMM, Plehn, Rauch, Spira, Walz, 1403.7191

[couplings normalized to SM couplings]

$$\sum_{i=1}^{3} g_{H_iVV}^2 = 1$$
$$\frac{1}{\sum_{i=1}^{3} g_{H_itt}^2} + \frac{1}{\sum_{i=1}^{3} g_{H_ibb}^2} = 1$$

Scenario: MSSM: sum rules fulfilled – NMSSM: deviation from sum rule

M.M.Mühlleitner, 22 July 2014, SUSY 2014, University of Manchester

• Example benchmark scenario D.2

D.2 (Point ID 110)	Scenario		
$M_{H_1}, M_{H_2}, M_{H_3} \equiv M_{H_s}, M_h, M_H$	112.0 GeV	126.3 GeV	1288.2 GeV
$M_{A_s}, M_A = M_{A_1}, M_{A_2}$	61.5 GeV	1287.4 GeV	
$ S_{H_1h_s} ^2, P_{A_1a_s} ^2$	0.63	1	
$\mu_{ au au}$, μ_{bb}	0.73	0.62	
μ_{ZZ} , μ_{WW} , $\mu_{\gamma\gamma}$	0.90	1.03	1.06
$ aneta$, λ , κ	6.36	0.47	0.14
A_λ , A_κ , μ_{eff}	1217.1 GeV	19.6 GeV	195.3 GeV
A_t , A_b , $A_ au$	-1804.6 GeV	-1196.8 GeV	1704.8 GeV
M_1 , M_2 , M_3	417.2 GeV	237.5 GeV	2362.2 GeV
$M_{Q_3}=M_{t_R}$, M_{b_R}	967.8 GeV	3 TeV	
$M_{L_3}=\overline{M_{ au_R}}$, $M_{{ m SUSY}}$	2491.6 GeV	3 TeV	

 $\sigma(gg \to H) = 0.46 \,\, {\rm fb} \;, \; \sigma(bbH) = 0.82 \,\, {\rm fb} \;, \quad \sigma(gg \to A) = 0.72 \,\, {\rm fb} \;, \; \sigma(bbA) = 0.82 \,\, {\rm fb} \;$

• H, A difficult to produce \rightsquigarrow exploit sum rules

$$\sum_{i=1}^{2} g_{H_iVV}^2 \approx 1$$
$$\frac{1}{\sum_{i=1}^{2} g_{H_itt}^2} + \frac{1}{\sum_{i=1}^{2} g_{H_ibb}^2} = 1.85$$

Non-discovered H has large MSSM H_d component \rightsquigarrow

Significant deviation in Higgs-fermion coupling sum rule

(H_u component taken by SM-like $H_2 \equiv h$ for sufficient cxn in gluon fusion)

At high-energy LHC: Higgs-fermion couplings measurable at O(10 - 20%)CMS, 1307.7135; ATLAS, 1307.7292, Snowmass 1310.8361

$\boldsymbol{\mathcal{C}onclusions}$

• NMSSM Higgs sector compatible w/ LHC data

- \star SM-like Higgs can be H_1 or H_2 ; degenerate Higgs signal at 126 GeV possible
- \star Higgs bosons below 100 GeV not excluded

Natural NMSSM

- \star good discovery prospects at high-enery LHC
- \star direct production or production in Higgs-to-Higgs and/or Higgs-to-Higgs+Gauge Boson
- \star Higgs-to-Higgs \rightsquigarrow measurement of trilinear Higgs self-couplings

Benchmark Scenarios

- \star cross sections in Higgs-to-Higgs decays can be large
- $\star \rightsquigarrow$ discovery channels and/or trilinear Higgs coupling measurements
- \star exotic multi-photon, multi-fermion final states, ${\not\!\!E}_T$ final states possible
- \star exploit coupling measurements to distinguish NMSSM from MSSM if not all Higgses discovered

Be prepared for (exotic) signals in low- & high-mass regions in order not to miss BSM Higgs sectors

$\mathcal{T}\mathsf{hank}\ \mathcal{Y}\mathsf{ou}\ \mathcal{F}\mathsf{or}\ \mathcal{Y}\mathsf{our}\ \mathcal{A}\mathsf{ttention}!$

D.2 (Point ID 110)	Signal Rates
$\sigma(ggh)$	27.37 pb
$\sigma(ggh)BR(h\to A_sA_s)$	1.85 pb
$\sigma(ggh)BR(h\to A_sA_s\to bb+bb)$	1.55 pb
$\sigma(ggh)BR(h\to A_sA_s\to\tau\tau+\tau\tau)$	12.36 fb
$\sigma(ggh)BR(h\to A_sA_s\to bb+\tau\tau)$	212.07 fb
$\sigma(ggh)BR(h\to A_sA_s\to bb+\gamma\gamma)$	0.34 fb
$\sigma(ggH_s)$	17.25 pb
$\sigma(ggH_s)BR(H_s\to b\bar{b})$	14.64 pb
$\sigma(ggH_s)BR(H_s\to\tau\tau)$	1.50 pb
$\sigma(ggH_s)BR(H_s\to\gamma\gamma)$	13.93 fb
$\sigma(ggH_s)BR(H_s\to ZZ)$	23.90 fb
$\sigma(ggH_s)BR(H_s\to WW)$	401.21 fb
$\sigma(ggH_s)BR(H_s\to\mu\mu)$	5.33 fb
$\sigma(ggH_s)BR(H_s\to Z\gamma)$	4.15 fb
$\sigma(ggA_s)$	1.13 pb
$\sigma(ggA_s)BR(A_s\to b\bar{b})$	1.03 pb
$\sigma(ggA_s)BR(A_s\to\tau\tau)$	92.46 fb
$\sigma(ggH)$, $\sigma(bbH)$	0.46 fb, 0.82 fb
$\sigma(ggA), \sigma(bbA)$	0.72 fb, 0.82 fb

Superposition of Signal Rates

$$R_{pp,H_i} = \frac{\sigma_{\text{incl}}^{\text{NMSSM}}}{\sigma_{\text{incl}}^{\text{SM}}} \cdot \frac{\text{BR}(H_i \to pp)^{\text{NMSSM}}}{\text{BR}(H_i \to pp)^{\text{SM}}} \quad \text{with} \quad i = 1..5.$$
$$R_{pp,H_i}^{\text{combined}} = \sum_{k=1}^{5} R_{pp,H_k} \cdot \underbrace{\exp\left(\frac{-(M_{H_k} - M_{H_i})^2}{2(d_p \cdot M_{H_k})^2}\right)}_{F_p(M_{H_k})}$$

This weighting factor depends on the mass difference and on a factor d_p which is decay specific:

p	au au	WW	bb	ZZ	$\gamma\gamma$
d_p	0.2	0.2	0.1	0.02	0.02

${\mathcal D}$ istributions of λ , κ A_{λ} and A_{κ}

${\cal D}$ istributions of aneta and $\mu_{ m eff}$

King, MMM, Nevzorov, Walz

 $|\mu_{
m eff}| \lesssim 100$ GeV excluded due to lower chargino mass bounds

$\mathcal{S}inglet-/\mathcal{D}oublet\ \mathcal{C}haracter\ of\ the\ \mathcal{NMSSM}\ \mathcal{H}iggs\ \mathcal{B}osons$

King,Nevzorov,MMM,Walz

$\tan\beta < 5$	$H_{i=1}$ SM-like	$H_{i=2}$ SM-like
$H_{j=1,2\neq i}$	singlet	singlet- up to almost doublet
H_3	doublet	doublet
A_1	mostly singlet (few doublet)	mostly singlet (few doublet)
A_2	mostly doublet (few singlet)	mostly doublet (few singlet)
$\tan\beta\geq 5$	$H_{i=1}$ SM-like	$H_{i=2}$ SM-like
$\frac{\tan\beta \ge 5}{H_{j=1,2\neq i}}$	$H_{i=1}$ SM-like mostly doublet	$H_{i=2}$ SM-like singlet- up to almost doublet
$\begin{array}{c} \tan\beta \geq 5 \\ \\ H_{j=1,2 \neq i} \\ \\ H_3 \end{array}$	$H_{i=1}$ SM-likemostly doubletsinglet (few doublet)	$H_{i=2}$ SM-likesinglet- up to almost doubletdoublet
$\begin{array}{c} \tan\beta \geq 5 \\ \\ H_{j=1,2 \neq i} \\ \\ H_3 \\ \\ A_1 \end{array}$	$H_{i=1}$ SM-likemostly doubletsinglet (few doublet)doublet or singlet (for small M_{A_1})	$H_{i=2}$ SM-likesinglet- up to almost doubletdoubletdoublet or singlet (for small M_{A_1})

\mathcal{P} roduction \mathcal{C} ross \mathcal{S} ections for H, A

King, MMM, Nevzorov, Walz

Signal \mathcal{R} ates for H

King, MMM, Nevzorov, Walz

