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Lightest SM-like Higgs mass strongly depends on: 

Mh depends logarithmically on the averaged stop mass scale MSUSY  and has a quadratic and 
quartic dep. on the stop mixing parameter  Xt.  [ and on sbotton/stau sectors for large tanbeta] 

For moderate to large values of tan beta and large non-standard Higgs masses  

Analytic expression valid for  MSUSY~ mQ ~ mU 

* CP-odd Higgs mass mA                          * tan beta                           *the top quark mass 

*the stop masses and mixing 
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Computation with mainly two different Methods

Diagrammatic Approach :  Includes all the one-loop corrections plus the dominant 
two loop corrections.  It preserves the exact dependence on the sparticle 
spectrum  (FeynHiggs)

Renormalization Group Approach :  Includes all the relevant one and two loop 
corrections at the leading logarithmic level, as well as finite threshold corrections 
associated with the decouple of heavy sparticles.  Leading logarithmic corrections 
may be included at higher loops, by solving the corresponding RG equations.

Diagrammatic Approach is expected to be more precise if sparticles are light

A careful RG approach should lead to all relevant contributions if sparticles are 
heavy.  

The RG resummation may be cut at different loop levels, and it could be  compared 
with the results of the diagrammatic approach.  Inclusion of weak couplings is easy 
in this approach  (this talk)
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Figure 2. Comparison of the diagrammatic two-loop O(m2
t h

2
t αs) result for mh, to leading order

in mt/MS [eqs. (46) and (47)] with the “mixed-scale” one-loop EFT result [eq. (49)]. Note that

the latter now includes the threshold corrections due to stop mixing in the evaluation of mt(MS) in

contrast to the EFT results depicted in fig. 1. “Mixed-scale” indicates that in the no-mixing and

mixing contributions to the one-loop Higgs mass, the running top quark mass is evaluated at different

scales according to eq. (48). See text for further details. The two graphs above are plotted for

MS = mA = (m2
g̃ + m2

t )
1/2 = 1 TeV for the cases of tan β = 1.6 and tanβ = 30, respectively.
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Standard Model-like Higgs Mass

Carena, Haber, Heinemeyer, Hollik,Weiglein,C.W.’00

Xt = At � µ/ tan�, Xt = 0 : No mixing; Xt =
�

6MS : Max. Mixing

Long list of two-loop computations:  Carena, Degrassi, Ellis, Espinosa, Haber, Harlander, Heinemeyer, Hempfling, 
Hoang, Hollik, Hahn, Martin, Pilaftsis, Quiros, Ridolfi, Rzehak, Slavich, C.W., Weiglein, Zhang, Zwirner

mt = 180 GeV.

For mt = 173 GeV,

the maximum mh

shifts to 127 GeV.

SM-like MSSM Higgs Mass 

At~2.4 MS 

At=0 

2 -loop corrections:      

Many contributions to two loop corrections computations:  
Brignole, M.C., Degrassi,  Diaz, Ellis, Haber, Hempfling, Heinemeyer, Hollik, Espinosa,  Martin, 
 Quiros, Ridolfi, Slavich,  Wagner, Weiglein, Zhang, Zwirner, …  

M.C, Haber, Heinemeyer,  
Hollik,Weiglein,Wagner’00 

! 

mh "130 GeV
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For masses of order 1 TeV, diagrammatic and EFT approach agree well, once the 
appropriate threshold corrections are included
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2

as it captures many of the qualitative features that we
will see. We have characterized the scale of superpart-

ner masses with MS ⇥
�
mt̃1mt̃2

⇥1/2
. First, we see that

decreasing tan� always decreases the Higgs mass, inde-
pendent of all the other parameters (keeping in mind that
tan� � 1.5 for perturbativity). So we expect to find a
lower bound on tan� coming from the Higgs mass. Sec-
ond, we see that the Higgs mass depends on Xt/MS as
a quartic polynomial, and in general it has two peaks at
Xt/MS ⌅ ±

⇧
6, the “maximal mixing scenario” [10]. So

we expect that mh = 125 GeV intersects this quartic in
up to four places, leading to up to four preferred values
for Xt/MS . Finally, we see that for fixed Xt/MS , the
Higgs mass only increases logarithmically with MS itself.
So we expect a mild lower bound on MS from mh = 125
GeV.

Now let’s demonstrate these general points with de-
tailed calculations using FeynHiggs. Shown in fig. 1 are
contours of constant Higgs mass in the tan�, Xt/MS

plane, for mQ = mU = 2 TeV (where mQ and mU

are the soft masses of the third-generation left-handed
quark and right-handed up-type quark scalar fields). The
shaded band corresponds to mh = 123 � 127 GeV, and
the dashed lines indicate the same range of Higgs masses
but with mt = 172 � 174 GeV. (The central value in all
our plots will always be mh = 125 GeV at mt = 173.2
GeV.) From all this, we conclude that to be able to get
mh ⌅ 125 GeV, we must have

tan� � 3.5 (2)

So this is an absolute lower bound on tan� just from the
Higgs mass measurement. We also find that the Higgs
mass basically ceases to depend on tan� for tan� beyond
⇤ 20. So for the rest of the paper we will take tan� = 30
for simplicity.

Fixing tan�, the Higgs mass is then a function of Xt

and MS . Shown in fig. 2 are contours of constant mh vs
MS and Xt. We see that for large MS , we want

Xt

MS
⌅ �3, �1.7, 1.5, or 3.5 (3)

We also see that the smallest the A-terms and the SUSY-
scale can absolutely be are

|Xt| � 1000 GeV, MS � 500 GeV. (4)

It is also interesting to examine the limits in the plane
of physical stop masses. Shown in fig. 3 are plots of the
contours of constant Xt in the mt̃2 vs. mt̃1 plane. Here
the values of Xt < 0 and Xt > 0 were chosen to satisfy
mh = 125 GeV, and the solution with smaller absolute
value was chosen. In the dark gray shaded region, no
solution to mh = 125 GeV was found. Here we see that
the t̃1 can be as light as 200 GeV, provided we take t̃2 to
be heavy enough. We also see that the heavy stop has to
be much heavier in general in the Xt < 0 case.
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FIG. 1. Contour plot of mh in the tan� vs. Xt/MS plane.
The stops were set at mQ = mU = 2 TeV, and the result is
only weakly dependent on the stop mass up to � 5 TeV. The
solid curve is mh = 125 GeV with mt = 173.2 GeV. The band
around the curve corresponds to mh =123-127 GeV. Finally,
the dashed lines correspond to varying mt from 172-174.
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FIG. 2. Contours of constant mh in the MS vs. Xt plane,
with tan� = 30 and mQ = mU . The solid/dashed lines and
gray bands are as in fig. 1.

III. IMPLICATIONS FOR THE SUSY
BREAKING SCALE

Having understood what mh ⌅ 125 GeV implies for
the weak-scale MSSM parameters, we now turn to the
implications for the underlying model of SUSY-breaking
and mediation. In RG running down from a high scale,
for positive gluino mass M3, the A-term At decreases.
The gluino mass also drives squark mass-squareds larger

Large Mixing in the Stop Sector Necessary

P. Draper, P. Meade, M. Reece, D. Shih’11
L. Hall, D. Pinner, J. Ruderman’11

M. Carena, S. Gori, N. Shah, C. Wagner’11
A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon’11

S. Heinemeyer, O. Stal, G. Weiglein’11
U. Ellwanger’11
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Stop Mixing and the Stop Mass Scale

For smaller values of the mixing parameter, the Stop Mass Scale must be 
pushed to values (far) above the TeV scale

The same is true for smaller values of           , for which the tree-level 
contribution is reduced

In these cases, the RG approach allows to resum the large logarithmic 
corrections and leads to a more precise determination of the Higgs mass 
than the fixed order computations.  

The level of accuracy may be increased by including weak coupling 
corrections to both the RG running of the quartic coupling, as well as 
threshold corrections that depend on these couplings

One can also use the RG approach to obtain partial results at a given fixed 
order by the methods we shall describe below

tan�
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Three Loop Computations
For many years, the Higgs phenomenology was described by a multiplicity of 
programs which contain computations of the Higgs mass at the two-loop 
order.

The Higgs mass in this computations had a slow increase with the stop mass 
scale and actually it decreases for sufficiently large values of this scale, when 
the Higgs mass was expressed as a function of the top quark mass at Mt.

A partial three-loop diagrammatic computation was performed, including the 
dominant QCD effects, and showed a faster than expected increase of the 
Higgs mass.

Such an increase implies that the stop                                                         
mass spectrum consistent with the                                                              
observed Higgs mass was pushed to                                                           
lower values, within the LHC reach.

The question remained of what was                                                             
the effect of the ignored subdominant                                                            
three-loop corrections that depend on                                                       
the top-Yukawa coupling and the strong                                                      
gauge coupling

Higher loop effects should also be evaluated.
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FIG. 2. Comparison of H3m results with the 2-loop results
of FeynHiggs [10–13], SOFTSUSY [14], SuSpect [15], and
SPheno [16, 17]. The H3m bands indicate the uncertainty
from varying the renormalization scale between MS/2 and
2MS . The supersymmetry parameters are as in Fig. 1.

In Fig. 3 we show contours of mh with 3-loop correc-
tions in two well-studied (m

0

,M
1/2) planes of mSUGRA.

To highlight the regions of parameter space preferred by
mh, at each point in parameter space, we define a theo-
retical uncertainty �

th

⌘ p
(�

pert

)2 + (�
para

)2, where

�
pert

⌘ 1

2

���m(3-loop)

h �m(2-loop)

h

��� ,

�
para

⌘
���mh(

mt=175.1 GeV

↵s=0.1177 )�mh(
mt=173.3 GeV

↵s=0.1184 )
��� . (4)

The quantity �
pert

is the estimated uncertainty from ne-
glecting higher-order terms in the perturbation series.
It is motivated by observing that the scale variation of
the two-loop prediction underestimates the 3-loop correc-
tions, and is typically in the 0.5 to 1.5 GeV range. The
parametric uncertainty �

para

arises dominantly from the
uncertainty in the top quark mass. In the figure, we
shade regions where the calculated mh is within �

th

and
2�

th

of the experimental central value 125.6 GeV.
The positive 3-loop terms significantly impact the pre-

ferred range of superpartner masses and the prospects
for supersymmetry discovery at the LHC. In Fig. 3, top
panel, A

0

= 0 and stop mixing is negligible through-
out the plane. Requiring that the theoretical prediction
be within 2�

th

of the experimental central value, and
imposing the further requirement that thermal relic neu-
tralinos make up all the dark matter (the focus point
region [32, 33]), scalar mass parameters as low as m

0

⇠
4� 5 TeV, corresponding to stop masses as low as 3 to 4
TeV, and gluino masses as low as mg̃ ' 2.8M

1/2 ⇡ 2 TeV
are consistent with the measured Higgs mass. These are

FIG. 3. 3-loop H3m mh contours in two (m
0

,M
1/2) planes of

mSUGRA, with tan�, A
0

, and sign(µ) as indicated. In the
dark blue (light green) shaded regions, the theoretical predic-
tion is within �

th

(2�
th

) of the experimental central value.
On the ⌦� = ⌦

DM

contour, thermal relic neutralinos are all
the dark matter. Top: Negligible stop mixing, with current
exclusion contour from CMS [28], and projected sensitivities
of the 14 TeV LHC and its high-luminosity upgrade [29]. Bot-
tom: Significant stop mixing, with current exclusion contour
from ATLAS [30], and projected sensitivities of the 14 TeV
LHC and its high-luminosity upgrade [31].

far lighter than the squark masses required if only 1- and
2-loop corrections to mh are included. Current bounds
do not challenge this parameter space [28], but the 14
TeV LHC with 100 fb�1 will already start probing the
favored parameter space, and a high-luminosity upgrade
to 3 ab�1 may probe most of it [29]. The LHC reach was
extrapolated from a study that used tan� = 45 [29] by

Small Mixing, moderate tanb
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We will be interested in the limits of the fi as µ̂ ⇤ 0 or 1, with

f(1,2,3)(µ̂) =

⇤
⇧

⌅
(0, 1, ⌅

2

6 ) µ̂ = 0,

(�1, 12 ,�
9
4) µ̂ = 1.

(27)

Finally, we include one-loop threshold corrections from converting the tree-level quartic

coupling from the DR to MS scheme and those from the heavy Higgses, which are taken

from [26]
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Our final expression for ⇤MSSM(MS) to which we match the SM running quartic coupling is

⇤MSSM(MS) = ⇤tree +�(sc)
th +�(H)

th +�(�t)
th +�(�b)

th +�(�� )
th +�(�s�t)

th +�
(�2

t )
th . (30)

III. RUNNING THE SM DOWN FROM MS

Once the MSSM has been integrated out, the SM parameters can be run down to the

electroweak scale and the spectrum computed. The �-function �⇤ = d⇤
dt for a generic running

coupling ⇤ can be written as

�⇤(t) ⇥
�⌃

n=1

⇥n�(n)
⇤ (t) =

�⌃

n=1

⇥n
�⌃

k=0

�(n,k)
⇤ (t̃)

k!
(t� t̃)k, (31)

where

⇥ ⇥ 1

16⌅2
, t ⇥ logQ, �(n,k)

⇤ (t) ⇥ dk�(n)
⇤

dtk
(t). (32)

We will also use the shorthand �(n)
⇤ ⇥ �(n,0)

⇤ . We will denote ⌥Q as the high scale, and we

define L ⇥ t̃� t = log( ⌥Q/Q) > 0. Integrating from t to t̃, we find

⇤(Q) = ⇤( ⌥Q)�
�⌃

n=1

⇥n
�⌃

k=0

(�1)k
�(n,k)
⇤ (t̃)

(k + 1)!
Lk+1. (33)

Alternatively, we can expand the beta-function coe⇥cients �(n,k)
⇤ about the low scale Q,

⇤( ⌥Q) = ⇤(Q) +
�⌃

n=1

⇥n
�⌃

k=0

�(n,k)
⇤ (t)

(k + 1)!
Lk+1. (34)
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Evolution of the quartic Coupling

We want to evaluate the coupling at the weak scale (mt) starting from 
the stop mass scale. It can be done in two ways, depending on where 
the couplings are evaluated.  Taking                                 ,  

These two expressions are not equivalent, and represent a different 
reorganization of the perturbativexpansion.  The second one is implemented in 
CPsuperH.   The first one leads to a faster convergence

from [26]
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Alternatively, we can expand the beta-function coe⇤cients �(n,k)
⇤ about the low scale Q,
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To see the equivalence with Eq. (39), we can evolve the beta-function coe⇤cients �(n,k)
⇤ (t̃)

down to the low scale �(n,k)
⇤ (t) using the same expansion as in Eq. (37). The e⇥ect on the

beta-functions in Eq. (39) is to remove the tildes and make all the leading signs negative,
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Convergence of RG Method.

II. INTEGRATING OUT THE MSSM

In this section we give an overview of the threshold corrections to the running SM pa-

rameters in the MS scheme, obtained by integrating out the MSSM at a scale MS. For

the Higgs quartic coupling, we include one-loop gauge, Higgs, and third generation Yukawa

corrections, as well as two-loop corrections controlled by the top Yukawa and strong gauge

coupling. We pay particular attention to terms arising from changing the renormalization

scheme from DR in the MSSM to MS.

The quartic coupling in the MSSM is determined at leading order by the D-terms,

⇤tree =
1

4
(g2Y + g22)c

2
2�, (3)

where, in this section, we use the notation ⇤ ⇤ ⇤MSSM(MS) for the MSSM quartic coupling

in the MS scheme at Q = MS and c� = cos �, s� = sin �, and t� = tan � = vu/vd, with

vu and vd the vacuum expectation values of the MSSM Higgs doublets. It is well-known

that ⇤ receives significant non-logarithmic radiative corrections from the mixing of heavy

SUSY partners at the high scale. In the framework of e�ective field theory, these “threshold

corrections” are a result of the decoupling of heavy particles at the high scale.

The largest e�ect comes from the top-stop sector. The squark mass matrix in the MSSM

has the form

M2
t̃ =

⇤
m2

t̃L
+m2

t + c2�
�

1
2 �

2
3s

2
W

⇥
m2

Z mtXt

mtXt m2
t̃R

+m2
t +

2
3c2�s

2
Wm2

Z

⌅
, (4)

where we have followed the notation of [18] with the stop mixing parameter defined as

Xt = At � µ cot � and sW = sin ⇥W , with ⇥W the Weinberg angle. Diagonalizing this matrix

yields the tree-level stop masses mt̃1 ,mt̃2 and the stop mixing angle ⇥t̃. Neglecting the terms

proportional to mZ and setting mt̃L = mt̃R = MSUSY,M2
S = M2

SUSY + m2
t , we obtain the

simplified squark mass matrix

M2
t̃ =

⇤
M2

S mtXt

mtXt M2
S

⌅
, (5)

with

m2
t̃1,2

= M2
S ⇥ |mtXt|. (6)
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Details of the Calculation

Tree-level coupling, should be evaluated at the SUSY breaking scale :

Simplified stop spectrum :

This approximation is abandoned at the one-loop level, in the 
evaluation of the thresholds to the quartic coupling
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We choose the scale MS as our high scale, assuming that all supersymmetric partners have

similar masses; however, we keep the MSSM µ parameter free with µ = M1 = M2 so that

light electroweakinos can be accommodated.

From [15], we include the one-loop corrections that are not c⇥ suppressed, as we will be

interested in the t⇥ ⇥ 1 case. These include terms from decoupling stops, sbottoms, and

staus:

�(�t)
th ⇥ = 6�h4

t s
4
⇥
⇧X2
t

�
1�

⇧X2
t

12

⇥
, (7)

�(�b)
th ⇥ = �1

2
�h4

bs
4
⇥µ̂

4, (8)

�(�� )
th ⇥ = �1

6
�h4

⌅s
4
⇥µ̂

4, (9)

where ht (hb, h⌅ ) is the MSSM top (bottom, tau) Yukawa coupling, ⇧Xt = Xt/MS, µ̂ = µ/MS,

and following the notation of [19], we keep track of loop order via � = 1/(16⇤2). Note that

the parameters on the right-hand sides of these equations are running couplings evaluated

at MS. At tree-level, the MSSM Yukawa couplings are related to the SM Yukawa couplings

by

yt = hts⇥, yb = hbc⇥, y⌅ = h⌅c⇥; (10)

however, these couplings are modified at one-loop order at MS by [24, 25]:

ht =
yt
s⇥

⇤
1� 8

3
�g23 ⇧Xt I

�
1� mt

MS

⇧Xt, 1 +
mt

MS

⇧Xt, 1
⇥
+ �h2

b

µ̂

t⇥
⇧Xb I(1, 1, µ

2)

⌅�1

(11)

hb =
yb
c⇥

⇤
1� 4

3
�g23 ⇧Xb + �h2

t µ̂t⇥ ⇧Xt I
�
1� mt

MS

⇧Xt, 1 +
mt

MS

⇧Xt, µ̂
2
⇥

� 1

2
�g22µ̂t⇥

⌃
I
�
1� mt

MS

⇧Xt, 1, µ̂
2
⇥
+ I

�
1 +

mt

MS

⇧Xt, 1, µ̂
2
⇥
+ I(1, 1, µ̂2)

⌥

� 1

3
g21µ̂t⇥

⌃1
6
+

3

2
I(1, 1, µ̂2)

⌥⌅�1

, (12)

h⌅ =
y⌅
c⇥

⇤
1� 3

2
�g22µ̂t⇥ I(1, 1, µ̂

2) +
1

2
�g21µ̂t⇥

⌃
1� I(1, 1, µ̂2)

⌥⌅�1

, (13)

where Xb = Ab � µt⇥ is the sbottom mixing parameter, and we have set all MSSM masses

mg̃ = M2 = M1 = mb̃i
= m⌅̃i = m⇤̃i = MS and will assume Ab = At. The electroweak cor-

rections to ht have been omitted, as we are also omitting the h2
t g

2
2, h

2
t g

2
1 threshold corrections

that originate from the m2
Z term in M2

t̃
. Although these appear at di⇥erent orders, the quar-

tic power of ht in �(�t)
th partially compensates the additional loop suppression factor.[PD:
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One loop thresholds to the quartic coupling and Yukawas in the MS scheme
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It is important to consider the thresholds to the quartic couplings induced by the D-
term, weak gauge couplings contributions to the stop masses, which was ignored before

The top, bottom and tau Yukawa couplings have the usual threshold corrections at the scale of 
supersymmetric particles

Very relevantly, two loop corrections were included to relate the top quark mass to the running mass

and Q = MS for the seven parameters g3, g2, g1, yt, yb, y⌧ ,�, with g1 =
p
5/3gY the SM

hypercharge coupling expressed in the SU(5) normalization. In the middle column of Table I

we indicate the order of �-function used for each coupling. Observables and electroweak scale

boundary values for the SM parameters are taken from Tables 2 and 3 of [27]. We reproduce

the observables and the parameters g2, g1, yb, and y⌧ in Tables II and III. The next-to-next-

to-leading-order (NNLO) values of g3 and yt are given in terms of the observables Mt and

↵s(MZ) in [27], to which we refer the reader for further details:

yt(Q = Mt) = 0.93697± 0.00550
⇣ Mt

GeV
� 173.35

⌘
� 0.00042

↵s(MZ)� 0.1184

0.0007
, (40)

g3(Q = Mt) = 1.1666 + 0.00314
↵s(MZ)� 0.1184

0.0007
� 0.00046

⇣ Mt

GeV
� 173.35

⌘
. (41)

We note that the central value for yt(Mt) quoted here includes the N3LO pure QCD con-

tribution. The value of �(Mt) is determined by beginning with the approximate value of

�(Mt) corresponding to the Higgs pole mass Mh ⇠ 125.6 GeV. The numerical integration

yields a value �̄(MS). This is compared to Eq. (35) from Section II, which is determined by

the other couplings at MS. If the di↵erence exceeds a specified tolerance, the starting value

�(Mt) is appropriately adjusted. This procedure is iterated until convergence is achieved.

We find that for a tolerance of 10�6, about 10 iterations are required.

Observable Value

SU(3)c MS gauge coupling (5 flavors) ↵s(MZ) = 0.1184± 0.0007

Fermi constant from muon decay V = (
p
2GF )�1/2 = 246.21971± 0.00006 GeV

Top quark pole mass Mt = 173.36± 0.65± 0.3 GeV

Z boson pole mass MZ = 91.1876± 0.0021 GeV

Higgs pole mass Mh = 125.66± 0.34 GeV

TABLE II. SM observables, collected in Table 2 of [27].

The second method is to solve the RGEs perturbatively around a reference scale. The

result is a fixed-order expression. We take two values for the renormalization scale in this

approach, Q = MS and Q = Mt. Since we know �� up to the three-loop level, we can

write an expansion up to four-loop order excluding only the four-loop N3LL terms, which
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We choose the scale MS as our high scale, assuming that all supersymmetric partners have
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where ht (hb, h⇤ ) is the MSSM top (bottom, tau) Yukawa coupling, ⇤Xt = Xt/MS, µ̂ = µ/MS,

and following the notation of [19], we keep track of loop order via ⇤ = 1/(16⇧2). Note that

the parameters on the right-hand sides of these equations are running couplings evaluated

at MS. At tree-level, the MSSM Yukawa couplings are related to the SM Yukawa couplings

by

yt = hts⇥, yb = hbc⇥, y⇤ = h⇤c⇥; (10)

however, these couplings are modified at one-loop order at MS by [24, 25]:

ht =
yt
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1

1� ⇤(�ht + cot � ⇥ht)
, (11)
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yb
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1

1� ⇤(�hb + t⇥ ⇥hb)
, (12)

h⇤ =
y⇤
c⇥
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1� ⇤t⇥ ⇥h⇤
, (13)
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, µ), (14)
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⇥
, (15)
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3
g2YM1

�
� 1
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2
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, (17)
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�
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1

2
[c2⇤I(m⇤̃1 ,M2, µ) + s2⇤I(m⇤̃2 ,M2, µ)]

⇥

� g2YM1

�
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1

2
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⇥
, (18)

where Xb = Ab � µ t� and X⇤ = A⇤ � µ t� are the sbottom and stau mixing parameters,

st, sb, s⇤ (ct, cb, c⇤ ) are the sines (cosines) of the stop, sbottom, and stau mixing angles, and

the function I(a, b, c) is defined as

I(a, b, c) =
a2b2 log(a2/b2) + b2c2 log(b2/c2) + a2c2 log(c2/a2)

(a2 � b2)(b2 � c2)(a2 � c2)
. (19)

We will set all MSSM masses mg̃ = mb̃i
= m⇤̃i = m⇥̃i = MS (such that s2X = c2X = 1/2 with

X = t, b, ⌅), assume At = Ab = A⇤ , and consider the two scenarios M2 = M1 = µ = MS

(the “high µ” case) and M2 = M1 = µ = 200 GeV (the “low µ” case).2 Taking the

appropriate limits when the arguments are degenerate, we have the common asymptotic

forms for I(a, b, c):

I(MS,MS,MS) =
1

2M2
S

, (20)

I(MS,MS, µ) =
1

M2
S

(1 + µ̂2(1 + log µ̂2)), µ̂ ⇤ 1, (21)

I(MS, µ, µ) = � 1

M2
S

(1 + µ̂2) log µ̂2, µ̂ ⇤ 1. (22)

For lower values of MS ⇥ 1 TeV and µ ⇥ 200 GeV, the correction can be significant, e.g.

I(1, 1, 0.2) ⇥ 0.76.

The expressions for the dominant two-loop corrections of O(�s�t) and O(�2
t ) will depend

on the scheme used for the one-loop corrections. The two-loop finite O(�s�t) corrections

2 We have neglected the threshold corrections from this intermediate scale to �, yt. They can be found in

[26], and involve only gY , g2,�. We estimate that the corrections to � lower mh by about 0.5 GeV.
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and we have taken the appropriate limits when two of the three arguments are degenerate.

When the third argument is µ̂2, we have the common asymptotic forms:
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The expressions for the dominant two-loop corrections of O(�s�t) and O(�2
t ) will depend

on the scheme used for the one-loop corrections. The two-loop finite O(�s�t) corrections

were computed diagrammatically in the OS scheme in [7], and in the DR scheme using

the e⇥ective potential method in [11]. In a follow-up to the latter paper [12], the O(�2
t )

corrections were also computed. It was shown in [12] and [18] that the di⇥erent expressions

for the O(�t�s) corrections in the two schemes are reconciled once the one-loop O(�t)

corrections are written in the appropriate scheme.

We will express ⌅ in terms of the MSSM couplings in the MS scheme given in Eqs. (11),

(12), (13). To determine �(�s�t)
th ⌅,�

(�2
t )

th ⌅ in this scheme, let us write the one-loop correction

to the running DR Higgs mass obtained from the Higgs e⇥ective potential in [12]
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⇥⌅
, (17)

where all parameters are evaluated at a renormalization scale Q, and we are using the

notation of Appendix A (see Table IV). Here, we have included the logarithmic contribution

and used the subscript DR to distinguish this correction from those in Eqs. (7, 8, 9), which

contain only the finite or threshold terms. Converting this to a correction in ⌅̃, we have

�(�t)

DR
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⇥ ṽ
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, (18)

where we have now chosen Q = MS. In this expression, ⌅̃ is a 1PI coupling; in the Wilsonian

e⇥ective theory, the logarithmic term will be obtained from the running below MS. Param-

eters in this term should be converted to the MS scheme in the SM, i.e. ⇧mt(MS) ⌅ mt(MS)
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and h̃t(MS) ⇤ yt(MS)/s⇥ multiplied by the appropriate one-loop corrections given in Ap-

pendix A. This substitution produces a finite correction once the logarithm is expanded

to one-loop order. For the non-logarithmic terms, we change  m(MS) ⇤ mt(MS) and

h̃t(MS) ⇤ ht(MS) to match the threshold corrections in Eq. (7). After performing the

scheme conversion for the one-loop terms and modifying the two-loop O(�s�t) and O(�2
t ),

we find
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3
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� 24k
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t � 6 �X4
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t �

�19
12

+ 8K) �X4
t
�Y 2
t

⌅⌃
. (20)

We have borrowed the notation of [12], with the constant K, parameter �Yt, and functions fi

defined as:

K = � 1⌅
3

⌥ ⇤/6

0

dx log(2 cosx) ⇥ �0.1953256, (21)

�Yt = (At � µt⇥)/MS = �Xt +
2µ̂

sin 2⇥
, (22)

f1(µ̂) =
µ̂2

1� µ̂2
log µ̂2, (23)

f2(µ̂) =
1

1� µ̂2

⌦
1 +

µ̂2

1� µ̂2
log µ̂2

↵
, (24)

f3(µ̂) =
�1 + 2µ̂2 + 2µ̂4

(1� µ̂2)2
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log µ̂2 log(1� µ̂2) + Li2(µ̂

2)� ⇧2

6
� µ̂2 log µ̂2

⌅
, (25)

and the dilogarithm function Li2 is

Li2(x) = �
⌥ 1

0

dy
log(1� xy)

y
. (26)
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One and two-loop log corrections

They reproduced the values in the literature.  Weak corrections included

Light chargino effects resummed at the loop level and provide a dependence 
on the value of mu, raising the mass for smaller values of mu (we assume 
gaugino masses at the scale of the mu parameter 

The running Higgs mass at Mt is given by

m2
h(Mt) = �(Mt)v

2(Mt). (43)

We use one-loop running to obtain v(Mt) = 246.517 GeV from v(MZ) ⇠ V (see Table II).

The logarithmic factors are L = log(MS/Mt) and Lµ = log(MS/µ) (note that the latter also

includes logs of the form log(MS/M1,2)). Below, all parameters are in the MS scheme and

should be evaluated at Q = MS:

�(Mt) = �+ �1�+ 2�2�+ 3�3�+ 4�4�, (44)

and

�1� =
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The analysis of the three-loop corrections show a high degree of  cancellation 
between the dominant and subdominant contributions

This is a SM effect, since this is the effective theory we are considering.  

This shows that a partial computation of three loop effects is not justified
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To simplify the expression, we have excluded the yb, y� , g1, g2 contributions beyond two-loop

order.

To convert the running mass into the pole mass, we use the one-loop formula
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The cancellation between dominant and subdominant contributions 
persists at the four loop level  !
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FIG. 4. Plots of the separate contributions of terms at n-loop order proportional to g2k3 , 0  k 
n � 1. For the three-loop figures (top row), the blue dashed (red dot-dashed) lines include the

terms proportional to g43y
4
t (g23y

6
t ). The green dotted line is the remainder, and the black solid

line is the total di↵erence from the two-loop result. Similarly, for the four-loop figures (bottom

row), the blue dashed (red dot-dashed, green dotted) lines include the terms proportional to g63y
4
t

(g43y
6
t , g

2
3y

8
t ), and the yellow dotted line is the remainder.

subleading log corrections. Our result is exhibited in Fig. 4. Although the individual

contributions to the radiative corrections are about 50% larger in magnitude than was found

in [19], our cancellation is more e�cient, in part because we are using higher values for Mt

and Mh and have included subleading log orders.

Figure 4 raises the concern that a partial three-loop fixed-order computation that includes

only g43y
4
t corrections and not g43y

6
t terms may overestimate the Higgs mass by several GeV

for MS of order 10 TeV. This may explain in part the discrepancy between the required stop

scales found with resummation and those found in the analysis of [22].

In Fig. 5, we show contours of the central, 1�, and 2� values for Mh in the (MS, tan �)
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scales found with resummation and those found in the analysis of [22].

In Fig. 5, we show contours of the central, 1�, and 2� values for Mh in the (MS, tan �)
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Three and four loop correction  dependence on 
the stop mass scale.

QCD dominant (blue dashed line)
QCD top Yukawa (red dot-dashed line)

Top Yukawa QCD (green dotted line line)
Total Contribution (black line)

Very large cancellations
Three and four loop contributions similar
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Higgs Mass in the Maximal Mixing Scenario

For 1 TeV, mass
is 2 GeV smaller

than previous calculations, mostly
due to the two-loop QCD 

corrections to the 
running top quark mass

Still, stops with degenerate stop
mass parameters can be as light 

as 500 GeV 
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For zero Mixing, the necessary
stop masses go well beyond
the LHC reach !

RG approach allow you to get 
an accurate prediciton of the 
lightest Higgs mass even in these
cases
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Higher loop corrections in terms of couplings at the 
top-quark mass scale
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FIG. 1. Plots of Higgs massMh versus the SUSY scaleMS for bXt = 0, tan� = 20 with µ = MS (left

column) and µ = 200 GeV (right column). The solid magenta, black dotted, blue dot-dashed, and

red dotted lines correspond to the resummed calculation and the four-, three-, and two-loop fixed-

order calculations, respectively. The shaded regions for each calculation indicate the uncertainty

from varyingMt by the 1� values. The top (bottom) figure in each column corresponds to the fixed-

order calculation for Q = MS (Q = Mt). The grey (yellow) region corresponds to the approximate

1� (2�) values for the Higgs mass Mh ⇠ 125.6 ± 0.7 GeV measured by the ATLAS and CMS

collaborations, and the cyan region is excluded by LEP.

We observe that the Q = MS fixed-order results converge approximately monotonically

with increasing loop-order towards the resummed result, whereas the Q = Mt exhibits the

alternating behaviour and shows significantly worse agreement for large MS � 10 TeV. The

resummed method and the Q = MS four-loop fixed-order calculation di↵er by less than 0.5

GeV in the µ = MS case, and by just over 1 GeV in the µ = 200 GeV case; the di↵erence

between the resummed and three-loop results is less than 1.5 GeV and 1 GeV, respectively.

The value of the pole mass Mt is the dominant source of parametric uncertainty for Mh:

18

Draper, Lee, C.W.’13

Contributions alternate in sign and converge more slowly than when 
corrections are expressed in terms of couplings at the MS scale
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FIG. 3. Plots of Higgs mass Mh versus the SUSY scale MS using the fixed-order calculation with

couplings at MS obtained from the full numerical integration. We use the values bXt = 0, tan� = 20

(top row) and bXt =
p
6, tan� = 4 (bottom row), with µ = MS (left column) and µ = 200 GeV

(right column). See Fig. 1 for details.

From these plots we conclude that the four-loop NNLL result with Q = MS is equal to

the resummed result, within the current top mass uncertainties, for MS as large as tens of

TeV. Unsurprisingly, the three-loop result diverges more rapidly, and underestimates the

Higgs mass in the case Q = MS.

On the other hand, it is also possible to overestimate corrections to the Higgs mass

by considering only a subset of the three-loop terms. This is due to a striking accidental

cancellation at leading log in �3� (�4�) between leading g43y
4
t (g63y

4
t ) and subleading g23y

6
t

and y8t (g43y
6
t , g

2
3y

8
t , and y10t ) contributions; these are the last three (four) terms before the

large closing curly braces in Eqs. (47) and (48). We note that the cancellation persists to

a lesser degree at each subleading log order in Lk. The cancellation at leading log was first

noted in [19], the result of which we extend to higher values of MS and improve by including
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Similar behavior
is obtained for

large mixing but
small values 

of tanb

Draper, Lee, C.W. ’13

Tuesday, July 22, 14



124.2

124.9
125.6 126.3

127

10000 15000 20000 25000 30000
5

10

15

20

25

30

MS �GeV⇥

ta
n�⇥⇥

Mh , QRG � MS , Xt⇤MS � 0, ⇤ � MS
124.2

124.9 125.6
126.3 127

6000 8000 10000 12000 14000
5

10

15

20

25

30

MS �GeV⇥

ta
n�⇥⇥

Mh , QRG � MS , Xt⇤MS � 0, ⇤ � 200 GeV

124.2

124.9

125.6 126.3 127

1000 2000 3000 4000 5000 6000 7000 8000

4

6

8

10

12

14

MS �GeV⇥

ta
n�⇥⇥

Mh , QRG � MS , Xt⇤MS � 6 , ⇤ � MS

124.2

124.9 125.6 126.3 127

1000 2000 3000 4000 5000 6000 7000 8000

4

6

8

10

12

14

MS �GeV⇥

ta
n�⇥⇥

Mh , QRG � MS , Xt⇤MS � 6 , ⇤ � 200 GeV

FIG. 5. Plots of central (solid), 1� (dashed), and 2� (dotted) contours of the Higgs mass Mh in

the tan� vs. MS plane for values of bXt = 0,
p
6 (top, bottom rows) and µ = MS , 200 GeV (left,

right columns).

plane for bXt = 0,
p
6 and µ = MS, 200 GeV. For bXt = 0 and µ = MS (200 GeV), we see again

that for large tan � > 20, we require MS ⇠ 18 (7) TeV to achieve Mh ⇠ 125.6 GeV, although

within uncertainties, this scale can vary by a few TeV. For a fixed value of moderate to large

tan � & 10, the relatively large spread in MS required to obtain Mh ⇠ 125.6 ± 0.7 GeV

corresponds to the shallow slope of Mh in Fig. 1 at large MS; the central value, however,

22

Necessary stop mass values to get
the proper Higgs mass for small 

mixing in the stop sector
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FIG. 5. Plots of central (solid), 1� (dashed), and 2� (dotted) contours of the Higgs mass Mh in

the tan� vs. MS plane for values of bXt = 0,
p
6 (top, bottom rows) and µ = MS , 200 GeV (left,

right columns).

plane for bXt = 0,
p
6 and µ = MS, 200 GeV. For bXt = 0 and µ = MS (200 GeV), we see again

that for large tan � > 20, we require MS ⇠ 18 (7) TeV to achieve Mh ⇠ 125.6 GeV, although

within uncertainties, this scale can vary by a few TeV. For a fixed value of moderate to large

tan � & 10, the relatively large spread in MS required to obtain Mh ⇠ 125.6 ± 0.7 GeV

corresponds to the shallow slope of Mh in Fig. 1 at large MS; the central value, however,
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Conclusions
Higgs Mass in the MSSM may be computed in terms of the teh gauge boson and sparticle 
masses

Radiative corrections depend strongly on the values of the top quark Yukawa and strong 
gauge couplings, as well as on the SUSY mass scale and stop mixing parameters.

There is a strong dependence on the mu parameter, that control the electroweakino 
contributions to the quartic couplings

Higher loop corrections are very important in controlling the Higgs mass and must be 
resummed once the supersymmetry particle masses are far above the TeV scale

There is a large cancellation between dominant and subdominant corrections at the three 
and four loop level, that make partial calculations unreliable

Use of the running top quark mass obtained from two-loop QCD corrections has an important 
impact on the final 

There are few GeV differences between our results and those obtained by FeynHiggs 
complemented with RG running that must be resolved. 
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