
Complementarity of Precision Higgs Measurements
and direct Searches for non-standard Higgs Bosons

Carlos E.M. Wagner

University of Chicago
Argonne National Laboratory

SUSY 2014 Conference, Univ. of Manchester, July 21 2014

Monday, July 21, 14



A Standard Model-like Higgs particle has been
discovered by the ATLAS and CMS experiments at CERN

We see evidence
of this particle

in multiple channels.

We can reconstruct
its mass and we know
that is about 125 GeV. 

The rates are consistent
with those expected 

in the Standard Model.
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Large Variations of Higgs couplings are still possible

But we cannot determine the Higgs couplings very accurately

As these measurements become more precise, they constrain possible 
extensions of the SM, and they could lead to the evidence of new physics.

It is worth studying what kind of effects one could obtain in well motivated 
extensions of the Standard Model, like SUSY.
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Going Beyond the SM :
Two Higgs Doublet Models

The simplest extension of the SM is to add one Higgs doublet, with the same 
quantum numbers as the SM one. 

Now, we will have contributions to the gauge boson masses coming from the 
vacuum expectation value of both fields

Therefore, the gauge boson masses are obtained from the SM expressions by 
simply replacing 

There is then a free parameter, that is the ratio of the two vacuum expectation 
values, and this is usually denoted by 

The number of would-be Goldstone modes are the same as in the SM, namely 3.    
Therefore, there are still 5 physical degrees of freedom in the scalar sector which 
are a charged Higgs, a CP-odd Higgs and two CP-even Higgs bosons. 

(D�i)
†D�i ! g2�†

iT
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v2
v1
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CP-even Higgs Bosons

There is no symmetry argument and in general these two Higgs boson states will 
mix.   The mass eigenvalues, in increasing order of mass, will be

From here one can easily obtain the coupling to the gauge bosons.  This is simply 
given by replacing in the mass contributions 

This leads to  a coupling proportional to 

Hence, the effective coupling of h is given by 

These proportionality factors are nothing but the projection of the Higgs mass 
eigenstates into the one acquiring a vacuum expectation value. 

vi ! vi +ReH0
i
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0
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Fermion Masses and Flavor

Similarly to the gauge boson masses, the fermion masses are obtain from the some of the 
contributions of both Higgs fields.

For instance, the down-quark mass matrix is given by

The interaction of the two CP-even scalars with fermions is given, instead, by

So, contrary to the SM, the rotation that diagonalizes the mass matrix does not diagonalize 
the couplings.  This in general leads to large Higgs mediated Flavor changing processes, that 
are in conflict with experiment. 

One solution is to make the non-standard Higgs bosons very heavy, going close to the SM.  
Another natural solution is to restrict the couplings of each fermion sector to only one of 
the two Higgs doublets.  This is what happens to a good approximation in supersymmetry. 

M ij
d = hij

d,1

v1p
2
+ hij

d,2

v2p
2

ghdidj / hij
d,1(� sin↵) + hij

d,2(cos↵)

gHdidj / hij
d,1(cos↵) + hij

d,2(sin↵)
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Low Energy Supersymmetry :   Type II Higgs doublet models

In Type II models, the Higgs H1 would couple to down-quarks and charge leptons, 
while the Higgs H2 couples to up quarks and neutrinos.  Therefore,

If the mixing is such that

then the coupling of the lightest Higgs to fermions and gauge bosons is SM-like. This 
limit is called decoupling limit.  Is it possible to obtain similar relations for lower values 
of the CP-odd Higgs mass ? We shall call this situation ALIGNMENT

Observe that close to the decoupling limit, the lightest Higgs couplings are SM-like, 
while the heavy Higgs couplings to down quarks and up quarks are enhanced 
(suppressed) by a             factor.   We shall concentrate on this case. 

It is important to stress that the coupling of the CP-odd Higgs boson

gdd,llhff =

Mdiag
dd,ll

v

(� sin↵)

cos�
, gdd,llHff =

Mdiag
dd,ll

v

cos↵

cos�

guuhff =
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uu

v

(cos↵)

sin�
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Mdiag
uu

v

sin↵

sin�

tan�

sin↵ = � cos�,

cos↵ = sin�

gdd,llAff =
Mdd

diag

v
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Muu
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v2
,
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1

4
(g21 − g22) = −

m2
Z
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+

1

2
g22 ,
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1

2
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L11 = λ1c
2
β + 2λ6sβcβ + λ5s

2
β ,

L12 = (λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β ,

L22 = λ2s
2
β + 2λ7sβcβ + λ5c

2
β .

Alignment in General two Higgs Doublet Models

In the MSSM, at tree-level, only the first four 
couplings are non-zero and are governed by D-
terms in the scalar potential.  At loop-level, all of 

them become non-zero via  the trilinear and quartic 
interactions with third generation sfermions.       

   Haber, Hempfling’93

H. Haber and J. Gunion’03

From here, one can minimize the effective potential and
     derive the expression for the CP-even Higgs mass matrix

in terms of a reference mass, that we will take to be mA
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CP-even Higgs Mixing Angle and Alignment

sin� =
M2

12q
M4

12 + (M2
11 �m2

h)
2

� tan� M2
12 =

�
M2

11 �m2
h

�
sin↵ = � cos�

Condition independent of the CP-odd Higgs mass.

seen by inspecting Table 2 in Ref. [5]. It is important to observe that s⇥�� = ±1 results in

an overall sign di�erence in the couplings of the SM-like Higgs and, hence, has no physical

consequences.

Similar arguments can be made in the case in which it is the heavy Higgs that behaves

as the SM Higgs. For this to occur,

s⇥�� = 0 (29)

and therefore c⇥�� = ±1. In the following, we shall concentrate in the most likely case that

the lightest CP-even Higgs satisfy the alignement condition. The heavy Higgs case can be

treated in an analogous way.

A. Derivation of the conditions for alignment

there’s only one subsection in this section. do we need to keep it as a separate subsection?

IL)

It is instructive to first derive the alignment limit in the usual decoupling regime with

a slightly unusual approach, by considering the eigenvalue equation of the CP-even Higgs

mass matrix, Eq. (18), which after plugging in the mass matrix in Eq. (9) becomes

�

⇤ s2⇥ �s⇥c⇥

�s⇥c⇥ c2⇥

⇥

⌅

�

⇤ �s�

c�

⇥

⌅ = � v2

m2
A

�

⇤ L11 L12

L12 L22

⇥

⌅

�

⇤ �s�

c�

⇥

⌅+
m2

h

m2
A

�

⇤ �s�

c�

⇥

⌅ . (30)

Decoupling is defined by taking all non-SM-like scalar masses to be much heavier than that

of the SM-like Higgs, m2
A ⇥ v2,m2

h. Then we see at leading order in v2/m2
A and m2

h/m
2
A the

right-hand side of Eq. (30) can be ignored and the eigenvalue equation reduces exactly to

the alignment limit, namely
�

⇤ s2⇥ �s⇥c⇥

�s⇥c⇥ c2⇥

⇥

⌅

�

⇤ �s�

c�

⇥

⌅ = 0 , (31)

which gives identical result to the well-known decoupling limit [3], c⇥�� = 0.

One of the main results of this work is to find the generic conditions to obtain alignment

without decoupling. The decoupling limit, where the low-energy spectrum contains only the

SM and no new light scalars, is only a subset of the more general alignment limit in Eq. (31).

In particular, quite generically, there exists regions of parameter space where one attains the

8
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alignment limit with new light scalars not far above mh = 125 GeV. The key observation is

that, while decoupling reaches alignment by neglecting the right-hand side of Eq. (30), the

alignment can be obtained if the right-hand side of Eq. (30) vanishes identically:

v2

⇤

⇧ L11 L12

L12 L22

⌅

⌃

⇤

⇧ �s�

c�

⌅

⌃ = m2
h

⇤

⇧ �s�

c�

⌅

⌃ . (32)

If a solution for the t⇥ can be found, then the alignment limit would occur for arbitrary

values of mA and does not require non-SM-like scalars to be heavy! More explicitly, subject

to Eq. (31), we can re-write the above matrix equation as two algebraic equations:

(C1) : m2
h = v2L11 + t⇥v

2L12 = v2
�
�1c

2
⇥ + 3�6s⇥c⇥ + �̃3s

2
⇥ + �7t⇥s

2
⇥

⇥
, (33)

(C2) : m2
h = v2L22 +

1

t⇥
v2L12 = v2

�
�2s

2
⇥ + 3�7s⇥c⇥ + �̃3c

2
⇥ + �6t

�1
⇥ c2⇥

⇥
. (34)

Recall that that �̃3 = �3 + �4 + �5. In the above Lij is known once a model is specified

and mh is measured to be 125 GeV. Notice that (C1) depends on all quartic couplings in

the scalar potential except �2, while (C2) depends on all quartics but �1. When the model

parameters satisfy Eqs. (33) and (34), the lightest CP-even Higgs behaves exactly like a SM

Higgs boson even if the non-SM-like scalars are light. A detailed analysis on the physical

solutions is presented in the next Section.

IV. ALIGNMENT IN GENERAL 2HDM

The condition (C1) and (C2) may be re-written as cubic equations in t⇥, with coe�cients

that depend on mh and the quartic couplings in the scalar potential,

(C1) : (m2
h � �1v

2) + (m2
h � �̃3v

2)t2⇥ = v2(3�6t⇥ + �7t
3
⇥) , (35)

(C2) : (m2
h � �2v

2) + (m2
h � �̃3v

2)t�2
⇥ = v2(3�7t

�1
⇥ + �6t

�3
⇥ ) , (36)

Alignment without decoupling occurs only if there is (at least) a common physical solution

for t⇥ between the two cubic equations.3 From this perspective it may appear that alignment

without decoupling is a rare and fine-tuned phenomenon. However, as we will show below,

there are situations where a common physical solution would exist between (C1) and (C2)

without fine-tuning.

3 Since t� > 0 in our convention, a physical solution means a real positive root of the cubic equation.

9

Alignment Conditions

• If fulfilled not only alignment is obtained, but also the right Higgs 
mass,                     , with                  and 

• For                         the conditions simplify, but can only be fulfilled if  

• Conditions not fulfilled in the MSSM, where both 

�SM = �1 cos
4 � + 4�6 cos

3 � sin� + 2

˜�3 sin
2 � cos

2 � + 4�7 sin
3 � cos� ++�2 sin

4 �

m2
h = �SMv2

�6 = �7 = 0

A. Alignment for vanishing values of �6,7

As a warm up exercise it is useful to consider solutions to the alignment conditions

(C1) and (C2) when �6 = �7 = 0 and �1 = �2, which can be enforced by the symmetries

�1 ⇤ ��2 and �1 ⇤ �2, then (C1) and (C2) collapse into quadratic equations

(C1) ⇤ (m2
h � �1v

2) + (m2
h � �̃3v

2)t2� = 0 , (37)

(C2) ⇤ (m2
h � �1v

2) + (m2
h � �̃3v

2)t�2
� = 0 , (38)

from which we see a physical solution exists for t� = 1, whenever

�SM =
�1 + �̃3

2
(39)

where we have expressed the SM-like Higgs mass as

m2
h = �SMv

2 . (40)

From Eq. (39) we see the above solution leading to t� = 1 is obviously a special one, since

it demands �SM to be the average value of �1 and �̃3.

For the purpose of comparing with previous studies, let’s relax the �1 = �2 condition

while still keeping �6 = �7 = 0. Recall that the Glashow-Weinberg condition [7] on the

absence of tree-level FCNC requires a discrete symmetry, �1 ⇤ ��1, which enforces at the

tree-level �6 = �7 = 0. Then the two quadratic equations have a common root if and only

if the determinant of the Coe⇥cient Matrix of the two quadratic equations vanishes,

Det

�

⇤ m2
h � �̃3v2 m2

h � �1v2

m2
h � �2v2 m2

h � �̃3v2

⇥

⌅ = (m2
h � �̃3v

2)2 � (m2
h � �1v

2)(m2
h � �2v

2) = 0 . (41)

Then the positive root can be expressed in terms of (�1, �̃3),

t(0)� =

⇧
�1 � �SM

�SM � �̃3

. (42)

We see from Eqs. (41) and (42), that t(0)� can exist only if {�SM,�1,�2, �̃3} have one of

the two orderings

�1 ⇥ �SM ⇥ �̃3 and �2 ⇥ �SM ⇥ �̃3 , (43)

10

or

�1 ⇥ �SM ⇥ �̃3 and �2 ⇥ �SM ⇥ �̃3 , (44)

It should be emphasized that the existence of the solution t(0)� is generic, in the sense that

once one of the conditions in Eqs. (43) and (44) is statisfied, then Eq. (42) leads to the

alignment solution t(0)� for a given (�1, �̃3). However, Eq. (41) must be also satisfied to solve

for the desired �2 that would make t(0)� a root of (C2). More specifically, the relations

�2 � �SM =
�SM � �̃3�

t(0)�

⇥2 =
�1 � �SM�

t(0)�

⇥4 (45)

must be fulfilled. Therefore, the alignment solution demands a specific fine-tuned relation

between the quartic couplings of the 2HDM. For instance, it is clear from Eqs. (42) and (45

that, if all quartic couplings are O(1), t(0)� ⇤ O(1) as well unless �̃3 and �2 are tuned to be

very close to �SM or �1 is taken to be much larger than �SM. For examples, t(0)� ⇤ 5 could

be achieved for (�1, �̃3,�2) ⇤ (1., 0.23, 0.261), or for (�1, �̃3) ⇤ (5., 0.07, 0.263).

Our discussions so far apply to scenarios of alignment limit studied, for instance, in

Refs. [4, 5], both of which set �6 = �7 = 0. The generic existence of fine-tuned solutions

may also shed light on why alignment without decoupling, on the one hand, has remained

elusive for so long and, on the other hand, appeared in di⇥erent contexts considered in

previous studies.

B. Large tan� alignment in 2HDMs

The symmetry �1 ⇧ ��1 leading to �6 = �7 = 0 is broken softly by m12. Thus a

phenomenologically more interesting scenario is to consider small but non-zero �6 and �7,

which we turn to next.

We study solutions to the alignment conditions (C1) and (C2) under the assumptions,

�6,�7 ⌅ 1 . (46)

Although general solutions of cubic algebraic equations exist, much insight could be gained

by first solving for the cubic roots of (C1) in perturbation,

t(±)
� = t(0)� ± 3

2

�6

�SM � �̃3

± �7(�1 � �SM)

(�SM � �̃3)2
+O(�2

6,�
2
7) , (47)

t(1)� =
�SM � �̃3

�7
� 3�6

�SM � �̃3

� �7(�1 � �SM)

(�SM � �̃3)2
+O(�2

6,�
2
7) . (48)
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or

�1, �̃3 < �SM

�3 + �4 + �5 = �̃3�SM ' 0.26
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Then at leading order in �, the Higgs couplings become

ghV V ⇥
⇤
1� 1

2
t�2
⇥ �2

⌅
gV , gHV V ⇥ t�1

⇥ � gV , (44)

ghdd ⇥ (1� �) gf , gHdd ⇥ t⇥(1 + t�2
⇥ �)gf , (45)

ghuu ⇥ (1 + t�2
⇥ �) gf , gHuu ⇥ �t�1

⇥ (1� �)gf . (46)

We see � characterizes the departure from the alignment limit of not only ghdd but also gHuu.

On the other hand, the deviation in the ghuu and gHdd are given by t�2
⇥ �, which is doubly

suppressed in the large t⇥ regime. Moreover, terms neglected above are of order �2 and are

never multiplied by positive powers of t⇥, which could invalidate the expansion in � when

t⇥ is large.

There are some interesting features regarding the pattern of deviations. First, whether

the coupling to fermions is suppressed or enhanced relative to the SM values, is determined

by the sign of �: ghdd and gHuu are suppressed (enhanced) for positive (negative) �, while

the trend in ghuu and gHdd is the opposite. In addition, as � ⌅ 0, the approach to the SM

values is the fastest in ghV V and the slowest in ghdd. This is especially true in the large t⇥

regime, which motivates focusing on precise measurements of ghdd in type II 2HDMs.

Our parametrization of c⇥�� = t�1
⇥ � can also be obtained by modifying Eq. (39), which

defines the alignment limit, as follows:
⇧

⌥ s2⇥ �s⇥c⇥

�s⇥c⇥ c2⇥

⌃

�

⇧

⌥ �s�

c�

⌃

� = t�1
⇥ �

⇧

⌥ �s⇥

c⇥

⌃

� . (47)

The eignevalue equation for mh in Eq. (40) is modified accordingly,

v2

⇧

⌥ L11 L12

L12 L22

⌃

�

⇧

⌥ �s�

c�

⌃

� = m2
h

⇧

⌥ �s�

c�

⌃

��m2
A t�1

⇥ �

⇧

⌥ �s⇥

c⇥

⌃

� . (48)

From the above, taking � ⇤ 1 and expanding to first order in �, we obtain the “near-

alignment conditions”,

(C1⇥) : m2
h = v2L11 + t⇥v

2L12 + �
�
t⇥(1 + t�2

⇥ )v2L12 �m2
A

⇥
, (49)

(C2⇥) : m2
h = v2L22 + t⇥

�1v2L12 � �
�
t�1
⇥ (1 + t�2

⇥ )v2L12 �m2
A

⇥
. (50)

We will return to study these two conditions in the next section, after first analyzing solutions

for alignment without decoupling in general 2HDMs.

12

More explicitly, since s� = �c⇥ in the alignment limit, we can re-write the above matrix

equation as two algebraic equations: 3

(C1) : m2
h = v2L11 + t⇥v

2L12 = v2
�
⇥1c

2
⇥ + 3⇥6s⇥c⇥ + ⇥̃3s

2
⇥ + ⇥7t⇥s

2
⇥

⇥
, (41)

(C2) : m2
h = v2L22 +

1

t⇥
v2L12 = v2

�
⇥2s

2
⇥ + 3⇥7s⇥c⇥ + ⇥̃3c

2
⇥ + ⇥6t

�1
⇥ c2⇥

⇥
. (42)

Recall that ⇥̃3 = (⇥3 + ⇥4 + ⇥5). In the above mh is the SM-like Higgs mass, measured to

be about 125 GeV, and Lij is known once a model is specified. Notice that (C1) depends

on all the quartic couplings in the scalar potential except ⇥2, while (C2) depends on all the

quartics but ⇥1. If there exists a t⇥ satisfying the above equations, then the alignment limit

would occur for arbitrary values of mA and does not require non-SM-like scalars to be heavy!

Henceforth we will consider the coupled equations given in Eqs. (41) and (42) as required

conditions for alignment. When the model parameters satisfy them, the lightest CP-even

Higgs boson behaves exactly like a SM Higgs boson even if the non-SM-like scalars are light.

A detailed analysis of the physical solutions will be presented in the next Section.

B. Departure from Alignment

Phenomenologically it seems likely that alignment will only be realized approximately,

rather than exactly. Therefore it is important to consider small departures from the align-

ment limit, which we do in this subsection.

Since the alignment limit is characterized by c⇥�� = 0, it is customary to parametrize the

departure from alignment by considering a Taylor-expansions in c⇥�� [7, 8], which defines the

deviation of the ghV V couplings from the SM values. However, this parametrization has the

drawback that deviations in the Higgs coupling to down-type fermions are really controlled

by t⇥ c⇥��, which could be O(1) when t⇥ is large. Therefore, we choose to parametrize the

departure from the alignment limit by a parameter � which is related to c⇥�� by

c⇥�� = t�1
⇥ � , s⇥�� =

⇤
1� t�2

⇥ �2 . (43)

3 The same conditions can also be derived using results presented in Ref. [8].
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Deviations from Alignment

The couplings of down fermions are not only the
ones that dominate the Higgs width but also tend

to be the ones which differ at most from the SM ones

�Sign(M2
12)(M2

22 � m2
h)/c� and B = |M2

12|/s�. Further, mh is the mass of the lightest

CP-even Higgs boson and M2
ii �m2

h > 0, i = {1, 2} by Eq. (20). Therefore Eq. (72) implies

A ⇥ 0 and B ⇥ 0 (74)

at the alignment limit.

Now in the near-alignment limit, where the alignment is only approximate, one can derive

ghdd =
A

B
�
1� (1�A2/B2)c2�

gf (75)

=

⌥
1� s2�

⇧
1� A

B

⌃
+O

�
(1�A/B)2

⇥�
gf , (76)

which, when comparing with Eq. (45), implies

⇥ = s2�

⇧
1� A

B

⌃
= s2�

B �A
B . (77)

Therefore, the ghdd coupling is enhanced (suppressed) if B�A < 0 (> 0). It is easy to verify

that the above equation is identical to the near-alignment condition (C1⇥) in Eq. (49). The

condition (C2⇥) could again be obtained using Eq. (22).

It is useful to analyze Eq. (76) in di�erent instances. For example, when ⇤6 = ⇤7 = 0,

one obtains

ghdd ⇤

 

↵1 + s�

⇤
⇤SM � ⇤̃3s2� � ⇤1c2�

⌅
v2

B

⌦

� gf . (78)

Hence, for ⇤̃3 > ⇤SM > ⇤1, a suppression of ghdd will take place for values of t� larger than

the ones necessary to achieve the alignment limit. On the contrary, for ⇤1 > ⇤SM > ⇤̃3,

larger values of t� will lead to an enhancement of ghdd.

On the other hand, for ⇤7 ⌅= 0 and large values of t�, one obtains

ghdd ⇤

 

↵1 + s�

⇤
⇤SM � ⇤̃3 � ⇤7t�

⌅
v2

B

⌦

� gf , (79)

which shows that for ⇤SM > ⇤̃3 and ⇤7 positive, ghdd is suppressed at values of t� larger than

those necessary to obtain the alignment limit, and vice versa.

One can in fact push the preceding analysis further by deriving the condition giving rise

to a particular deviation from alignment. More specifically, the algebraic equation dictating

the contour ghdd/gf = r, where r ⌅= 1, can be obtained by using Eq. (75):

m2
A =

1

R(�)� 1

A� B
s�

+
m2

h

s2�
� v2⇤5 � ⇤1v

2t�2
� � 2⇤6v

2t�1
� , (80)
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C. Departure from Alignment

So far we have analyzed solutions for the alignment conditions (C1) and (C2) in general

2HDMs. However, it is likely that the alignment limit, if realized in Nature at all, is

only approximate and the value of t⇥ does not need to coincide with the value at the

exact alignment limit. It is therefore important to study the approach to alignment and

understand patterns of deviations in the Higgs couplings in the “near-alignment limit,”

which was introduced in Section III B.

Although we derived the near-alignment conditions (C1�) and (C2�) in Eqs. (49) and

(50) using the eigenvalue equations, it is convenient to consider the (near-)alignment limit

from a slightly di�erent perspective. Adopting the sign choice (I) in Eq. (16) and using the

expression for the mixing angle, �, in Eq. (21), we can re-write the ghdd and ghuu couplings

as follows

ghdd = �s�
c⇥

gf =
A⇧

A2c2⇥ + B2s2⇥

gf , (68)

ghuu =
c�
s⇥

gf =
B⇧

A2c2⇥ + B2s2⇥

gf . (69)

where

A = �M2
12

c⇥
=

�
m2

A � (⇥3 + ⇥4)v
2
⇥
s⇥ � ⇥7v

2s⇥t⇥ � ⇥6v
2c⇥ , (70)

B =
M2

11 �m2
h

s⇥
=

�
m2

A + ⇥5v
2
⇥
s⇥ + ⇥1v

2 c⇥
t⇥

+ 2⇥6v
2c⇥ �

m2
h

s⇥
. (71)

Again it is instructive to consider first taking the pseudo-scalar mass to be heavy: mA ⇥ ⇤.

In this limit we have A ⇥ m2
As� and B ⇥ m2

As�, leading to �s�/c⇥ ⇥ 1 and c�/s⇥ ⇥ 1. We

recover the familiar alignment-via-decoupling limit. On the other hand, alignment without

decoupling could occur by setting directly

A = B , (72)

where, explicitly,

B �A =
1

s⇥

⇤
�m2

h + ⇥̃3v
2s2⇥ + ⇥7v

2s2⇥t⇥ + 3⇥6v
2s⇥c⇥ + ⇥1v

2c2⇥

⌅
= 0 , (73)

is nothing but the alignment condition (C1) in Eq. (41). The alignment condition (C2)

would be obtained if the representation in Eq. (22) is used instead, leading to A =
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For small departures from alignment, the parameter η can be determined     
as a function of the quartic couplings and the Higgs masses

,
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FIG. 2: Ratio of the value of the down-type fermion couplings to Higgs bosons to their SM values

in the case of low µ (L1j ⇥ 0), as obtained from Eq. (96), and �d ⌅ 0.

We can reach the same conclusion by using Eq. (21) for s� in this regime,

s� =
�(m2

A +m2
Z)s⇥c⇥⇤

(m2
A +m2

Z)
2s2⇥c

2
⇥ +

�
m2

As
2
⇥ +m2

Zc
2
⇥ �m2

h

⇥2 , (96)

which, for mA
>� 2mh and moderate t⇥ implies

� s�
c⇥

⌅ m2
A +m2

Z

m2
A �m2

h

. (97)

This clearly demonstrates that in this case the deviation of (�s�/c⇥) from 1 depends only on

mA and is independent of t⇥. In other words, alignment is only achieved in the decoupling

limit, m2
A ⇤ m2

Z ,m
2
h.

This also agrees with our expressions regarding the approach to the alignment limit via

decoupling, Eq. (77). In this regime �5,6,7 are very small implying

B ⌅ m2
A �m2

h, and B �A ⌅ �(m2
Z +m2

h) . (98)

In Fig. 2 we display the value of �s�/c⇥ in the mA � tan⇥ plane, for low values of µ, for

which the radiative corrections to the matrix element L11 and L12 are small, Eq. (96). As

expected from our discussion above, the down-type fermion couplings to the Higgs become
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Figure 5: Regions of the (mA, tan �) plane excluded in a simplified MSSM model via fits to the measured
rates of Higgs boson production and decays. The likelihood contours where �2 ln⇤ = 6.0, corresponding
approximately to 95% CL (2�), are indicated for the data and expectation assuming the SM Higgs sector.
The light shaded and hashed regions indicate the observed and expected exclusions, respectively. The
SM decoupling limit is mA ! 1.

for 2  tan �  10, with the limit increasing to larger masses for tan � < 2. The observed limit is
stronger than expected since the measured rates in the h ! �� (expected to be dominated by a W boson
loop) and h ! ZZ⇤ ! 4` channels are higher than predicted by the SM, but the simplified MSSM
has a physical boundary V  1 so the vector boson coupling cannot be larger than the SM value. The
physical boundary is accounted for by computing the profile likelihood ratio with respect to the maximum
likelihood obtained within the physical region of the parameter space, mA >0 and tan � >0. The range
0 tan � 10 is shown as only that part of the parameter space was scanned in the present version of this
analysis. The compatible region extends to larger tan � values.

The results reported here pertain to the simplified MSSM model studied and are not fully general.
The MSSM includes other possibilities such as Higgs boson decays to supersymmetric particles, decays
of heavy Higgs bosons to lighter ones, and e↵ects from light supersymmetric particles [60] which are
not investigated here.

8 Higgs Portal to Dark Matter

Many “Higgs portal” models [14,34,61–65] introduce an additional weakly-interacting massive particle
(WIMP) as a dark matter candidate. It is assumed to interact very weakly with the SM particles, except
for the Higgs boson. In this study, the coupling of the Higgs boson to the WIMP is taken to be a free
parameter.

The upper limit on the branching ratio of the Higgs boson to invisible final states, BRi, is derived
using the combination of rate measurements from the h ! ��, h ! ZZ⇤ ! 4`, h ! WW⇤ ! `⌫`⌫,
h! ⌧⌧, and h! bb̄ channels, together with the measured upper limit on the rate of the Zh! ``+ Emiss

T
process. The couplings of the Higgs boson to massive particles other than the WIMP are assumed to be
equal to the SM predictions, allowing the corresponding partial decay widths and invisible decay width

Low values of µ similar to the ones analyzed by ATLAS

ATLAS-CONF-2014-010
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Lightest SM-like Higgs mass strongly depends on: 

Mh depends logarithmically on the averaged stop mass scale MSUSY  and has a quadratic and 
quartic dep. on the stop mixing parameter  Xt.  [ and on sbotton/stau sectors for large tanbeta] 

For moderate to large values of tan beta and large non-standard Higgs masses  

Analytic expression valid for  MSUSY~ mQ ~ mU 

* CP-odd Higgs mass mA                          * tan beta                           *the top quark mass 

*the stop masses and mixing 
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2

as it captures many of the qualitative features that we
will see. We have characterized the scale of superpart-

ner masses with MS ⇥
�
mt̃1mt̃2

⇥1/2
. First, we see that

decreasing tan� always decreases the Higgs mass, inde-
pendent of all the other parameters (keeping in mind that
tan� � 1.5 for perturbativity). So we expect to find a
lower bound on tan� coming from the Higgs mass. Sec-
ond, we see that the Higgs mass depends on Xt/MS as
a quartic polynomial, and in general it has two peaks at
Xt/MS ⌅ ±

⇧
6, the “maximal mixing scenario” [10]. So

we expect that mh = 125 GeV intersects this quartic in
up to four places, leading to up to four preferred values
for Xt/MS . Finally, we see that for fixed Xt/MS , the
Higgs mass only increases logarithmically with MS itself.
So we expect a mild lower bound on MS from mh = 125
GeV.

Now let’s demonstrate these general points with de-
tailed calculations using FeynHiggs. Shown in fig. 1 are
contours of constant Higgs mass in the tan�, Xt/MS

plane, for mQ = mU = 2 TeV (where mQ and mU

are the soft masses of the third-generation left-handed
quark and right-handed up-type quark scalar fields). The
shaded band corresponds to mh = 123 � 127 GeV, and
the dashed lines indicate the same range of Higgs masses
but with mt = 172 � 174 GeV. (The central value in all
our plots will always be mh = 125 GeV at mt = 173.2
GeV.) From all this, we conclude that to be able to get
mh ⌅ 125 GeV, we must have

tan� � 3.5 (2)

So this is an absolute lower bound on tan� just from the
Higgs mass measurement. We also find that the Higgs
mass basically ceases to depend on tan� for tan� beyond
⇤ 20. So for the rest of the paper we will take tan� = 30
for simplicity.

Fixing tan�, the Higgs mass is then a function of Xt

and MS . Shown in fig. 2 are contours of constant mh vs
MS and Xt. We see that for large MS , we want

Xt

MS
⌅ �3, �1.7, 1.5, or 3.5 (3)

We also see that the smallest the A-terms and the SUSY-
scale can absolutely be are

|Xt| � 1000 GeV, MS � 500 GeV. (4)

It is also interesting to examine the limits in the plane
of physical stop masses. Shown in fig. 3 are plots of the
contours of constant Xt in the mt̃2 vs. mt̃1 plane. Here
the values of Xt < 0 and Xt > 0 were chosen to satisfy
mh = 125 GeV, and the solution with smaller absolute
value was chosen. In the dark gray shaded region, no
solution to mh = 125 GeV was found. Here we see that
the t̃1 can be as light as 200 GeV, provided we take t̃2 to
be heavy enough. We also see that the heavy stop has to
be much heavier in general in the Xt < 0 case.
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FIG. 1. Contour plot of mh in the tan� vs. Xt/MS plane.
The stops were set at mQ = mU = 2 TeV, and the result is
only weakly dependent on the stop mass up to � 5 TeV. The
solid curve is mh = 125 GeV with mt = 173.2 GeV. The band
around the curve corresponds to mh =123-127 GeV. Finally,
the dashed lines correspond to varying mt from 172-174.
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FIG. 2. Contours of constant mh in the MS vs. Xt plane,
with tan� = 30 and mQ = mU . The solid/dashed lines and
gray bands are as in fig. 1.

III. IMPLICATIONS FOR THE SUSY
BREAKING SCALE

Having understood what mh ⌅ 125 GeV implies for
the weak-scale MSSM parameters, we now turn to the
implications for the underlying model of SUSY-breaking
and mediation. In RG running down from a high scale,
for positive gluino mass M3, the A-term At decreases.
The gluino mass also drives squark mass-squareds larger

Large Mixing in the Stop Sector Necessary
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MSSM at large values of µ

 

For nonvanishing values of these couplings,  a new 
condition of alignment at large             is obtained 

Alignment for                       may be obtained, making 
difficult the test of the “wedge” by coupling variations.

At large values of µ, corrections to the quartic

couplings �5,6,7 become significant.f

tan�

tan� =
⇥SM � ⇥̃3

⇥7
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where as before �Lij denote variation under radiative corrections. We have further sepa-

rated out the corrections to the L12 component into �L12 and �L̃12, which contribute with

di⇥erent t� factors, namely

�L12 = �7, �L̃12 = � (�3 + �4) , �L11 = �5, �L22 = �2. (74)

In the above, we have only kept terms which are relevant for moderate or large values of

t�, and we have included �L22 for future use. In particular, since c� ⇤ 0 in the alignment

limit, we have droped the �1 term that is proportional to c2� and the �6c� term since �6 is

already a small quantity, being generated by radiative corrections. Note that generally the

e⇥ect of �L̃12 on the matrix element L12 will be suppressed for t� ⇥ 1, however, it can lead

to a relevant correction to the tree-level contribution since it has the same t� dependance,

and be also competitive to the radiatively generated �7 contribution.

Regarding the approach to the alignment limit for large t� ⇥ 1, and hence s� ⇤ 1, the

condition in Eqs. (33) and (34) now read

m2
h = �m2

Z + v2
�
�L11 +�L̃12 + t��L12

⇥
, (75)

m2
h = m2

Z + v2
�
�L22 + c2��L̃12 + c��L12

⇥
. (76)

Observe that since for moderate or large values of t�, c2� ⇤ �1 and s� ⇤ 1, the second

expression above just shows that the Higgs mass is strongly governed by �2, while the first

expression shows that one reaches the alignment limit for values of t� given by

t� ⇤ m2
h +m2

Z � v2(�L11 +�L̃12)

v2�L12
=

m2
h � v2�̃3

v2�7
. (77)

The radiative corrections to the matrix elements �L11, �L12 and �L̃12, which depend on

the quartic couplings �̃3 and �7, have been computed previously in the literature [48]. The

expressions of the radiatively corrected quartic couplings are included in the Appendix A.
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Check above equation. Moreover,
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where, for simplicity, we have ignored two-loop corrections. Hence, from the above, we

see that in the MSSM both v2�L11 and v2�L̃12 tend to be much smaller than m2
h. The

matrix element correction v2�L11 is always negative, but v2�L̃12 can be positive or negative

depending on the magnitude of A2
f/M

2
SUSY/⇥̃ . Since the corrections to �L12 ⇥ ⇥7 are small

compared to its tree-level (but tree-level value is zero. do you mean leading order value?

IL)value, one can write the large t� alignment condition in the MSSM as

tan � ⌅ ⇥SM � ⇥̃tree
3 ��⇥̃3

⇥7
=

120� 32⇤2
�
�L11 +�L̃12

⇥

32⇤2�L12
(81)

where we have made us of the fact that all contributions to ⇥7 in Eq. (78) are proportional to

1/(32⇤2) ⇤ O(1/300) and rescaled both the denominator and numerator by a factor of 32⇤2.

Therefore, in order to obtain sensible values of t� consistent with a perturbative description

of the theory, 0 < t� . 100, it is necessary that 32⇤2�L12 be positive and & 1. (don’t

you need the numerator to be positive at the same time? IL) Since at large values of t� all

the relevant Yukawa couplings are of order one, at least in one of the stop, sbottom or stau

sectors, the condition |µAf |/M2
SUSY > 1 must be fulfilled, where f = b, ⌅ or t .

Observe that for moderate values of |At| <
⇧
6MSUSY, the top contributions become

positive for negative values of At and positive for negative ones. The opposite signs are

obtained for |At| >
⇧
6MSUSY. Interestingly enough, the radiative corrections to ⇥2 (and

therefore to mh) are maximized at |At| ⌅
⇧
6MSUSY and therefore one can get consistency

with the measured mass for values of |At| larger or smaller than
⇧
6MSUSY. On the other

hand, the sbottom and stau contributions to ⇥7 become relevant at large values of t� and

are positive for µAb,⇥ > 0.

Figure 1 shows coutour plots for the quantity 32⇤2�L12 for di⇥erent values of the µ

parameter and positive/negative values of the parameters At. The bottom and Yukawa

coupling are set to zero and 1 in Figures 1(i) and 1(ii), respectively. Moreover, in Figures

1(i) and 1(ii) all Af/MSUSY parameters were taken to be equal, while in Figure 1(iii) opposite

signs were taken for the stop with respect to the sbottom and stau Af parameters. Figure

(1iv) shows the e⇥ect of taking large values of the stobbom and stau trilinear terms Ab,⇥ =

5MSUSY while varying only the stop At parameter.
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where as before �Lij denote variation under radiative corrections. We have further sepa-

rated out the corrections to the L12 component into �L12 and �L̃12, which contribute with

di⇥erent t� factors, namely

�L12 = �7, �L̃12 = � (�3 + �4) , �L11 = �5, �L22 = �2. (74)

In the above, we have only kept terms which are relevant for moderate or large values of

t�, and we have included �L22 for future use. In particular, since c� ⇤ 0 in the alignment

limit, we have droped the �1 term that is proportional to c2� and the �6c� term since �6 is

already a small quantity, being generated by radiative corrections. Note that generally the

e⇥ect of �L̃12 on the matrix element L12 will be suppressed for t� ⇥ 1, however, it can lead

to a relevant correction to the tree-level contribution since it has the same t� dependance,

and be also competitive to the radiatively generated �7 contribution.

Regarding the approach to the alignment limit for large t� ⇥ 1, and hence s� ⇤ 1, the

condition in Eqs. (33) and (34) now read
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Observe that since for moderate or large values of t�, c2� ⇤ �1 and s� ⇤ 1, the second

expression above just shows that the Higgs mass is strongly governed by �2, while the first

expression shows that one reaches the alignment limit for values of t� given by
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Impact and Size of Loop Corrections

Considering

The condition of alignment reads

where the loop corrections are approximately given by
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Figure 8: The MA–tan β plane in the τ -phobic Higgs scenario. The color coding is the same
as in Fig. 3.

Figure 9: Modification of the decay rate for the lightest CP-even Higgs boson into bottom
quarks (rbb, left) and τ -leptons (rττ , right) in the τ -phobic Higgs scenario, where rbb and rττ
are defined in analogy to rgg in Eq. (25).

3.6 The low-MH scenario

As it was pointed out in Refs. [8, 11, 12], besides the interpretation of the Higgs-like state
at ∼ 125.5 GeV in terms of the light CP-even Higgs boson of the MSSM it is also possible,
at least in principle, to identify the observed signal with the heavy CP-even Higgs boson of
the MSSM. In this case the Higgs sector would be very different from the SM case, since
all five MSSM Higgs bosons would be light. The heavy CP-even Higgs boson would have a

21

3.5 The τ -phobic Higgs scenario

Besides the loop effects on the Higgs vertices described in the previous sections, also propaga-
tor-type corrections involving the mixing between the two CP-even Higgs bosons of the
MSSM can have an important impact. In particular, this type of corrections can lead to rel-
evant modifications of the Higgs couplings to down-type fermions, which can approximately
be taken into account via an effective mixing angle αeff (see Ref. [63]). This modification
occurs for large values of the At,b,τ parameters and large values of µ and tan β.7

The scenario that we propose can be regarded as an update of the small αeff scenario
proposed in Ref. [17]. The parameters are:

τ -phobic Higgs :

mt = 173.2 GeV,

MSUSY = 1500 GeV,

µ = 2000 GeV,

M2 = 200 GeV,

XOS
t = 2.45MSUSY (FD calculation),

XMS
t = 2.9MSUSY (RG calculation),

Ab = Aτ = At ,

mg̃ = 1500 GeV,

Ml̃3
= 500 GeV . (28)

The relatively low value of Ml̃3
= 500 GeV and the large value of µ give rise to rather

light staus also in the τ -phobic Higgs scenario, in particular in the region of large tan β.
The corrections from the stau sector have an important influence on the Higgs couplings
to down-type fermions in this scenario. Furthermore, in this scenario decays of the heavy
CP-even Higgs boson into light staus, H → τ̃+1 τ̃−1 , occur with a large branching fraction in
the region of large tan β and sufficiently high MA. For example, for MA = 800 GeV and
tanβ = 45, we obtain BR(H → τ̃+1 τ̃

−
1 ) = 67%.

Figure 8 shows the bounds on the MA–tan β parameter space in the τ -phobic Higgs
scenario. As in the light stau scenario, the most important modification with respect to the
mmod

h scenarios is a larger exclusion at low values of tanβ induced by a decrease of the decay
rate into charginos and neutralinos.

Figure 9 shows the modification of the decay rate for the lightest CP-even Higgs boson
into bottom quarks (rbb) and τ -leptons (rττ ), both defined analogously to rgg, see Eq. (25).
The variations are most important at large values of tanβ, and they increase for smaller
values of MA, where the LHC exclusion limit from MSSM Higgs searches becomes very
significant. Still, as can be seen from the figure, modifications of the partial Higgs decay
width into τ+τ− larger than 20%, and of the decay width into bottom quarks larger than
10% may occur within this scenario.

7Large values of At,b,τ and µ are in principle constrained by the requirement that no charge and color
breaking minima should appear in the potential [64], or at least that there is a sufficiently long-lived meta-
stable vacuum. However, a detailed analysis of this issue is beyond the scope of this paper, and we leave it
for a future analysis.
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Suppression of down-type fermion couplings to the Higgs due to Higgs mixing 
effects.  Staus play a relevant role. Decays into staus relevant for  heavy 

non-standard Higgs bosons. 

M. Carena, S. Heinemeyer, O. Stål, 
C.E.M. Wagner, G. Weiglein,              
arXiv:1302.7033

Mixing Effects in the CP- even Higgs Sector

• Mixing can have relevant effects in the production and decay rates 

effects through radiative corrections
 to the CP-even mass matrix

which defines the mixing angle alpha
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Small Variations in the Br(Hbb) can induce 
significant variations in the other Higgs Br’s
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Radiative Corrections to Flavor Conserving Higgs Couplings

• Couplings of down and up quark fermions to both Higgs fields arise 
after radiative corrections. 

 

• The radiatively induced coupling depends on ratios                                   
of  supersymmetry breaking parameters
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Figure 1: SUSY radiative corrections to the self-energies of the d-quarks

We show that the usual approach of calculating tanβ enhanced FCNC (Flavor Changing
Neutral Currents) effects in the Kaon sector does not agree with the exact results one finds
in the limit of flavor independent masses. Thus, we develop a perturbative approach that
leads to agreement with the exact result in this limit. Finally we study the effects of the
phases of M1, M2, M3 and µ on ∆Ms, BR(Bs → µ+µ−) and ϵK in the cases of uniform and
split squark spectra.

We shall emphasize the implications of the present bounds on BR(Bs → µ+µ−) for future
measurements at the Tevatron collider, both in Higgs as well as in B-physics. In particular,
we shall show that the present bound on BR(Bs → µ+µ−) leads to strong constraints
on possible corrections to both ∆Ms and the Kaon mixing parameters in minimal flavor
violating schemes. Moreover, we shall show that this bound, together with the constraint
implied by the measurement of BR(b → sγ) leads to limits on the possibility of measuring
light, non-standard Higgs bosons in the MSSM.

This article is organized as follows. In section 2, we define our theoretical setup, giving
the basic expressions necessary for the analysis of the flavor violating effects at large values
of tan β. In particular, we show how the first order perturbative expressions in the CKM
matrix elements are inappropriate to define the corrections in the Kaon sector where higher
order effects need to be considered. In section 3 we show the implications of the constraint
on BR(Bs → µ+µ−) for the mixing parameters of the Kaon and B sectors in the large tanβ
regime. In section 4, we explain the implications for Higgs searches at the Tevatron. We
reserve section 5 for our conclusions and some technical details for the appendices.

2 Theoretical Setup

2.1 The resummed effective Lagrangian and the sparticle spec-
trum

The importance of large tan β FCNC effects in supersymmetry has been known for sometime.
The finite pieces of the one-loop self energy diagrams lead to an effective lagrangian for the

2

tan� =
v2

v1

Xt = At � µ/ tan� ⇥ At �b = (Eg + Eth
2
t ) tan �
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Hall, Rattazzi, Sarid’93

Carena, Olechowski, Pokorski, C.W.’93
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Branching Ratios and Widths of Non-Standard Higgs Decays into Staus
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FIG. 6: Production rate of �+�� induced by the presence of heavy CP-even and CP-odd scalars,

with mA ⇥ 1 TeV, normalized to the rate obtained in the maximal mixing scenario used by the

CMS collaboration [78].

significantly alleviate the experimental constraints on mA coming from the decay to taus.

However, note that large values of A� > 1 TeV lead to problems with vacuum stability in

this region of parameters.

V. LIGHT STAUS AND HIGGS SEARCHES

Light staus remains the smoking gun signal of the MSSM scenario considered in this

paper. In Ref. [5], we studied the possibility of searching for them in the channel (pp �

�̃� ⇥̃1 � W ⇥ ⇥̄ + 2⇤0) at the LHC using a straight cut and count method. We specifically

analyzed the final state signature consisting of one lepton, 2 hadronic taus and missing

energy. We showed that this is a challenging search channel for both the 8 TeV and the 14

TeV runs, due to low statistics.

Here we will briefly mention another possibility of probing our framework at the LHC.

We note that the final state mentioned above is the same as the one arising in the Higgs

search channel (pp � Wh) followed by (h � ⇥ ⇥̄). Therefore, it is interesting to see whether
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FIG. 5: Left : Branching ratios of the heavy Higgs bosons, H and A. Dashed red lines: BR(A �

�̃1�̃2), solid blue lines: BR(H � �̃1�̃1), solid green lines: BR(H � �̃2�̃2). Right : Total width of the

heavy Higgs bosons in GeV. Mass of the lightest stau is fixed to 95 GeV and mA = 1 TeV.

decay rate into staus. The right panel shows the corresponding increase in the total width

with increasing A� and fixed m�̃2 , which implies a decrease of the branching ratio of the

heavy Higgs decay into � leptons. On the other hand, for a fixed value of A� , the value of

µ increases with m�̃2 , which leads to an increase in �b and a more negative �� . Since the

width of the decay into bottom quarks is the dominant one, this causes the total width to

decrease. However, note that negative �� leads to an increase of the width of the decay

into � leptons, and hence to an increase of the branching ratio of the decay of the heavy,

non-standard Higgs bosons into these particles. On the other hand, the production cross

section of non-standard Higgs bosons is inversely proportional to (1 +�b)2 and hence there

is a compensating e⇥ect on the total rate of these Higgs bosons decaying into taus, Eq. (17).

Fig. 6 shows the variation of the production rate of taus as a function of m�̃2 and A� with

respect to the maximal mixing scenario [53] used by ATLAS and CMS [78]. We use the

same set of parameters as for Fig. 5. For a fixed value of A� , as a result of the compensation

of e⇥ects discussed above, only a small variation of the rate of �� production is observed

in the region of parameters under analysis. On the other hand, for a given value of m�̃2

and increasing values of A� , the �� production rate decreases due to an increase of the

width of the decay into stau leptons. Therefore, only for large values of A� can we hope to
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Decay branching
ratio of heavy non-standard 

Higgs boson to staus

Total heavy Higgs
boson width

Decay branching
ratio into taus,

compared to the 
mhmax scenario.

M. Carena, S. Gori, N. Shah, C. W. and L.T. Wang, arXiv:1303.4414 
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FIG. 5: Left : Branching ratios of the heavy Higgs bosons, H and A. Dashed red lines: BR(A �

�̃1�̃2), solid blue lines: BR(H � �̃1�̃1), solid green lines: BR(H � �̃2�̃2). Right : Total width of the

heavy Higgs bosons in GeV. Mass of the lightest stau is fixed to 95 GeV and mA = 1 TeV.

where the term proportional to (M2
W +M2

Z) is the approximate contribution from the decay

into light charginos and neutralinos. Similar to the case with heavy staus, Eq. (14), the

branching ratio is increased due to negative values of �⇥ and positive values of �b. However,

comparing Eqs. (14) and (17), we see that this increase is partially compensated for by the

stau decays, quantified by the last term in Eq. (17). Let us stress that Eq. (17) is only valid

when the stau, chargino and neutralino masses are much smaller than mA and should be

modified by the appropriate phase space factors if this is not the case.

As before, the production cross section is proportional to the product of the branching

ratio times the bottom Yukawa squared, giving

⇥(pp � (H,A) � ⇤+⇤�) ⇤ m2
b tan

2 �⇧⇤
3
m2

b
m2

�
+

(M2
W+M2

Z)(1+�b)2

m2
� tan2 �

⌅
(1 +�⇥ )2 + (1 +�b)2

�
1 + A2

�

m2
A

⇥⌃ .

(18)

The ⇤⇤ production rate again increases due to negative �⇥ and decreases due to positive

�b. However in addition, there is also a decrease in the rate due to the decays into the light

staus.

Let us now compare the ⇤ branching ratio in the light stau scenario with the one that

is obtained for heavy staus and small values of �b ⇥ 0.25 and �⇥ ⇥ 0, as happens at
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Tuesday, November 19, 2013

⇥(bb̄A)⇥BR(A! bb̄) ' ⇥(bb̄A)SM
tan2 �

(1 + �b)
2 ⇥

9
(1 + �b)

2 + 9

⇥(bb̄, gg ! A)⇥BR(A! ⇤⇤) ' ⇥(bb̄, gg ! A)SM
tan2 �

(1 + �b)
2 + 9

• Searches at the Tevatron and the LHC are induced by production channels 
associated with the large bottom Yukawa coupling.

• There may be a strong dependence on the parameters in the bb search 
channel, which is strongly reduced in the tau tau mode.

Searches for non-standard Higgs bosons
M. Carena, S. Heinemeyer, G.Weiglein,C.W, EJPC’06

Validity of this approximation confirmed by  NLO computation by D. 
North and M. Spira, arXiv:0808.0087
Further work by Mhulleitner, Rzehak and Spira, 0812.3815

Tuesday, November 19, 2013

Below*the*top*threshold*or*at*moderate*or*large*tanβ*(last*term*associated*with*light*staus)*:*

�(pp ! H,A ! ⌧⌧) / tan2 �h⇣
3
m2

b
m2

⌧
+

(M2
W+M2

Z)(1+�b)2

m2
⌧ tan2 �

⌘
(1 +�⌧ )

2 + (1 +�b)
2
i

• If charginos are light, they contribute to the total with, suppressing the BR.
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How to  test the
region of low tanbeta
and moderate  mA ?

Decays of non-standard
Higgs bosons into paris

of standard ones, charginos
and neutralinos may be 

a possibility.

Can change in couplings help 
there ?

It depends on radiative corrections

See
Carena, Haber, Logan, Mrenna ’01

H,A ! ��

In the MSSM, non-standard Higgs may be produced
via its large couplings to the bottom quark, and

searched for in its decays into bottom quarks and tau leptons
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Small differences in final analysis... Small excess at 200 GeV 
and tanβ of order 10 ?

Need to control the SM-like Higgs behavior !

Bounds used Final results

Tuesday, November 19, 2013
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Depending on the  values of  mu  and tanbeta different search strategies must be applied.

A variety of decay Branching Ratios
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Heavy Supersymmetric Particles
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Variation of the CP-odd Higgs Decays with the value of µ

Strong suppression due to chargino contribution

Carena, Haber, Low, Shah, C.W.’14

Decays into taus become prominent for heavy electroweakino 
masses (or suppressed couplings)
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Complementarity between different search channels
Carena, Haber, Low, Shah, C.W.’14

Limits coming from measurements of h couplings

become weaker for larger values of µ

Limits coming from direct searches of H,A ! ⌧⌧
become stronger for larger values of µ

Bounds on mA are therefore dependent on the scenario

and at present become weaker for larger µ

With a modest improvement of direct search limit one would
be able to close the wedge, below top pair decay threshold 
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Limit in the mhmax scenario that would close the
wedge for masses below  350 GeV

��� ��� ��� ��� ��� ��� ��� ���

�

�

��

��

P$ H*H9L

W b

⁄fL=$� +sHEEfL+JJfLL ¥ %5HfL Æ t tL H� 7H9L

5HTXLUHG PKPD[ OLPLWV WR FORVH WKH ZHGJH LQ GLIIHUHQW VFHQDULRV�

PK
PD[� m = ��� *H9�

&06-3$6-+,*-��-���
PK

DOW� m = �ê� P4

PK
DOW� m = P4

PK
DOW� m = �ê� P4

Monday, July 21, 14



Conclusions

The MSSM provides a very predictive framework for the computation of the 
Higgs phenomenology.

The properties of the lightest and heavy Higgs bosons depend strongly on 
radiative corrections mediated by the stops

In general, at low values of the CP-odd Higgs mass the lightest CP-even 
Higgs width increases, leading to a suppression of the other decay branching 
ratios (with the possible exception of loop induced couplings) 

Such suppressions are restricted by present measurements, and can only be 
avoided under the presence of alignment. 

Alignment in the MSSM appears for large values of mu, for which decays into 
electroweakinos are suppressed, making the bounds coming from decays 
into SM particles stronger. 

 Bounds on the CP-odd Higgs mass are model dependent and should take 
into account this dependence. 
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