

Bethe Center for Theoretical Physics

Partially composite Higgsino

Masaki Asano

(Bonn University)

Based on arXiv:1311.6823 (appear in JHEP)

MA, Ryosuke Sato

Today's talk

- Introduction
- Partially composite Higgs scenario in SUSY models
- Phenomenology of "partially compositeness of the Higgsino" in such models.
- Summary

LHC: Null results in SUSY search "mh =126 GeV"

High scale SUSY? SM can be valid even at very high scale; 10 GeV, 100 TeV,... or Mplanck?

or

TeV SUSY (but not discovered yet)

In this case, current results are new important hints for new physics model!

Introduction

$$V = m^2 |h|^2 + (\lambda/4) |h|^4$$
, - 2 m² = m_h²

In MSSM, the mass term can be written by these contributions

Introduction

 $V = m^2 |h|^2 + (\lambda/4) |h|^4$, - 2 $m^2 = m_h^2$

$$m^2 = \mu^2 + (m_{Hu}^2)_{tree} + (m_{Hu}^2)_{rad}$$

For μ term, Requiring no 10 % tuning ($\Delta^{-1} = m_h^2/2\mu^2$ > 10 %), $|\mu| \lesssim 290~{
m GeV}$

Introduction

 $V = m^2 |h|^2 + (\lambda/4) |h|^4$, - 2 m² = m_h²

$$m^2 = \mu^2 + (m_{Hu}^2)_{tree} + (m_{Hu}^2)_{rad}$$

$$\begin{split} m_{H_{u}}^{2}|_{\text{rad}} &\simeq -\frac{3y_{t}^{2}}{8\pi^{2}}(m_{Q_{3}}^{2} + m_{U_{3}}^{2} + |A_{t}|^{2})\ln\left(\frac{M_{\text{mess}}}{m_{\tilde{t}}}\right) \sim 10 \text{ TeV} \\ m_{\tilde{t}} &\equiv (m_{\tilde{q}_{3}}m_{\tilde{u}_{3}})^{1/2} \end{split}$$
Requiring no 10 % tuning ($\Delta^{-1} \equiv m_{h}^{2}/2m_{H_{u}}^{2}|_{\text{rad}} > 10 \%$),
 $m_{\tilde{t}} \lesssim 600 \text{ GeV} \text{ for } |A_{t}| \sim 0 \checkmark$
 $m_{\tilde{t}} \lesssim 500 \text{ GeV} \text{ for } |A_{t}| \sim m_{\tilde{t}}$
 $m_{\tilde{t}} \lesssim 350 \text{ GeV} \text{ for } |A_{t}| \sim 2m_{\tilde{t}}$

126 GeV Higgs?

large A term?

(But, the A term also contributes the EWSB tuning...)

Additional contribution to the Higgs mass?

In MSSM, corrections to the Higgs potential;

The larger coupling can push the Higgs mass up economically.

Higgs has semi-perturbative couplings to a strong sector:

$$W = \kappa_u^{2-d} H_u \mathcal{O}_d + \kappa_d^{2-d} H_d \mathcal{O}_u$$
$$W = \lambda_{ij} H \Psi_i \tilde{\Psi}_j$$

Fukushima, Kitano, Yamaguchi '10 Azatov, Galloway, Luty '11 Gherghetta, Pomarol '11 Heckman, Kumar, Vafa, Wecht '11 Csaki, Randall, Terning '12 Evans, Ibe, Yanagida '12 Kitano, Luty, Nakai '12

K : coupling (mass dim. 1), fairly strong due to 126GeV.

Higgs has semi-perturbative couplings to a strong sector:

$$W = \kappa_u^{2-d} H_u \mathcal{O}_d + \kappa_d^{2-d} H_d \mathcal{O}_u$$
$$W = \lambda_{ij} H \Psi_i \tilde{\Psi}_j$$

Fukushima, Kitano, Yamaguchi '10 Azatov, Galloway, Luty '11 Gherghetta, Pomarol '11 Heckman, Kumar, Vafa, Wecht '11 Csaki, Randall, Terning '12 Evans, Ibe, Yanagida '12 Kitano, Luty, Nakai '12

K : coupling (mass dim. 1), fairly strong due to 126GeV.

Higgs has semi-perturbative couplings to a strong sector:

Fukushima, Kitano, Yamaguchi '10

strong due to 126GeV.

$$W = \kappa_u^{2-d} H_u \mathcal{O}_d + \kappa_d^{2-d} H_d \mathcal{O}_u$$

$$W = \lambda_{ij} H \Psi_i \tilde{\Psi}_j$$
K : coupling (mass dim. 1), fairly strong due to 126GeV.
If the strong sector is a CFT, there is no UV problem.
Relevant operator in d < 2

Compositeness:

 $\epsilon_{u,d} \sim \left(\frac{\kappa_{u,d}}{\Lambda}\right)^{2-d}$: if $\epsilon_{u,d} \sim 1$, Higgs couples strongly.

Additional Higgs potential are produced Higgs mass can be 126 GeV

$$W_{
m dyn} \sim rac{\Lambda^3(H)}{16\pi^2}$$
 (NDA) Kitano, Luty, Nakai '12

0 01

, A term contribution, ...

 $\left(\kappa_{u}^{2-d}A_{u}H_{u}\mathcal{O}_{d}+\kappa_{d}^{2-d}A_{d}H_{d}\mathcal{O}_{u}\right)$

There are several new contributions!

EWSB can occur by a balance between two contributions of these and tree potential.

Additional Higgs potential are produced
 Higgs mass can be 126 GeV

If this is dominant contribution for stabilization, required values of $\varepsilon \& \Lambda$ can be obtained from observed Higgs mass.

Additional Higgs potential are produced
 Higgs mass can be 126 GeV

If this is dominant contribution for stabilization,

$$\epsilon \sim 0.4 \quad \Lambda \sim 800 \text{ GeV}$$

$$\epsilon_u \epsilon_d / \Lambda \sim 1 / (10 \text{TeV})$$

 $\epsilon_{u,d} \sim \left(\frac{\kappa_{u,d}}{\Lambda}\right)^{2-d}$: if $\epsilon_{u,d} \sim 1$, Higgs couples strongly.

Additional Higgs potential are produced
 Higgs mass can be 126 GeV
 mu-term

 $W_{\rm dyn}(d=\frac{3}{2}) \sim \kappa_u^{1/2} \kappa_d^{1/2} H_u H_d$

$$\mu_{\rm dyn} \sim \frac{\partial^2 W}{\partial H^2} \sim \frac{\Lambda^3}{(4\pi v)^2} \sim \epsilon^2 \Lambda \sim \mathbf{O(100) \ GeV}$$

- Additional Higgs potential are produced
 - Higgs mass can be 126 GeV
 - mu-term
 - Suppression for the m_{Hu} by superconformal behavior

- Additional Higgs potential are produced
 - Higgs mass can be 126 GeV
 - mu-term
 - Suppression for the m_{Hu} by superconformal behavior

Moreover, from the view point of composite Higgs scenario,

- Additional Higgs potential are produced
 - Higgs mass can be 126 GeV
 - mu-term
 - Suppression for the m_{Hu} by superconformal behavior

Because of "partially" compositeness

Advantage for flavor structure because SM particle masses can be produced by usual Yukawa coupling of elementary H.

Phenomenology

 Phenomenology from compositeness

 Partially compositeness would appear,

 Higgs compositeness:
 e.g. Higgs -> γγ

 Particle from strong sector:
 techni-rho meson

Higgsinos also have higher dimensional interaction

$$\int d^2\theta \int d^2\bar{\theta} \ g \frac{\epsilon_u \epsilon_d}{\Lambda^2} H_d W_\alpha e^V (D^\alpha e^{-V} H_u) \mathcal{Z}^\dagger$$

Higgsino compositeness ?

Higgsino compositeness

Higgsino compositeness

Neutralino decay (in pure Higgsino case)

MSSM case

 $\widetilde{H}{}^0{}_2$ decays into $\widetilde{H}{}^0{}_1$ via

Higgsino compositeness

Higgsino compositeness

Higgsino compositeness

Higgsino compositeness

Neutralino decay (in pure Higgsino case)

If there is the additional operator, $|m_{\chi_2} \circ| - |m_{\chi_1} \circ| [GeV]$ 50 20 10 5 4 3 $\mathcal{L} = \frac{c}{\Lambda_{\text{dipole}}} \bar{\tilde{\chi}}_1^0 \sigma_{\mu\nu} \tilde{\chi}_2^0 F^{\mu\nu}$ Λ_{dipole} 0.9 $\Lambda_{\mathsf{dipole}}$ ¹dipole = 0.8 0.7 $3r(\chi_2^{U} -> \chi_1^{U} \gamma)$ $\mu = 200 \text{ GeV}$ 0.6 two body decay Br. 0.5 can be larger than 0.4 0.3 MSSM case \rightarrow 0.2 0.1

 $\begin{array}{c} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ M_1 = M_2 \ [GeV] \end{array}$

Higgsino compositeness

Higgsino compositeness

- Neutralino decay
- Annihilation cross section

Line-gamma signal can also be enhanced in indirect dark matter detection.

Higgsino compositeness

- Neutralino decay
- Annihilation cross section

For annihilation, there are also other contributions.

$$W_{\rm BMSSM} = \frac{\lambda_1}{M} (H_u H_d)^2$$

Cheung, Choi, Song '09 Bernal, Blum, Nir, Losada '09 ...

Higgsino compositeness

- Neutralino decay
- Annihilation cross section
- Additional contribution to off diagonal in neutralino mass matrix

due to the kinetic mixing between gaugino and Higgsino.

 $\int d^4\theta \mathcal{Z}^{\dagger} H_d W_Y^{\alpha} e^V (D_{\alpha} e^{-V} H_u) \longrightarrow \sqrt{2} i H_d \tilde{H}_u \sigma^{\mu} \partial_{\mu} \tilde{B}^{\dagger}$

(& also the contribution from HHHH ...)

Higgsino compositeness

- Neutralino decay
- Annihilation cross section
- Additional contribution to off diagonal

$$\begin{pmatrix} M_{1} & 0 & -m_{Z}s_{W}c_{\beta}(1+\delta_{13}) & m_{Z}s_{W}s_{\beta}(1+\delta_{14}) \\ 0 & M_{2} & m_{Z}c_{W}c_{\beta}(1+\delta_{23}) & -m_{Z}c_{W}s_{\beta}(1+\delta_{24}) \\ -m_{Z}s_{W}c_{\beta}(1+\delta_{13}) & m_{Z}c_{W}c_{\beta}(1+\delta_{23}) & 0 & -\mu_{\text{eff.}} \\ m_{Z}s_{W}s_{\beta}(1+\delta_{14}) & -m_{Z}c_{W}s_{\beta}(1+\delta_{24}) & -\mu_{\text{eff.}} & 0 \end{pmatrix}$$

$$\mu_{\text{eff.}} = -\mu - \frac{\epsilon_u \epsilon_d \bar{C} m_Z^2 c_{2\beta}}{2\Lambda},$$

$$\delta_{13} = \frac{2C_{g',d} \epsilon_u \epsilon_d}{\Lambda} \left(-M_1 t_\beta + \mu\right), \qquad \delta_{14} = \frac{2C_{g',u} \epsilon_u \epsilon_d}{\Lambda} \left(-M_1 t_\beta^{-1} + \mu\right),$$

$$\delta_{23} = \frac{2C_{g,d} \epsilon_u \epsilon_d}{\Lambda} \left(-M_2 t_\beta + \mu\right), \qquad \delta_{24} = \frac{2C_{g,u} \epsilon_u \epsilon_d}{\Lambda} \left(-M_2 t_\beta^{-1} + \mu\right).$$

 One of the possibility to realize the viable Higgs potential
 → Partially composite Higgs scenario: Higgs potential can be produced by strong dynamics.

Partially compositeness would appear,

- Higgs compositeness: Higgs -> photon
- Particle from strong sector: techni-rho meson
- Higgsino compositeness Higgsino decay
 - Higgsino annihilation

it may also appear as Higgsino compositeness.

Additional Higgs potential are produced. Higgs mass can be 126 GeV.

many scenarios are proposed:

Fukushima, Kitano, Yamaguchi '10 Azatov, Galloway, Luty '11 Gherghetta, Pomarol '11 Heckman, Kumar, Vafa, Wecht '11 Csaki, Randall, Terning '12 Evans, Ibe, Yanagida '12 Kitano, Luty, Nakai '12

□ EWSB are achieves only by <H>.

or

EWSB are also achieves by strong sector.

Additional Higgs potential are produced.
 Higgs mass can be 126 GeV.

For example, Higgs bootstrap: Kitano, Luty, Nakai '12

