Triplet Extended MSSM: Fine Tuning vs Perturbativity & Experiment

Stefano Di Chiara

P.Bandyopadhyay, SD, K.Huitu, A.Sabancı; arXiv:1407.4836

SUSY 2014, Manchester

- Triplet contributes @ tree level to $m_H \Rightarrow$ less fine-tuning
- Possible enhancement of $H\to\gamma\gamma$
- Spontaneous CP violation \Rightarrow right amount of baryon asymmetry

Triplet Extension of MSSM

Triplet of $SU(2)_L$ (adjoint, Y = 0) defined by

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}}T^0 & T^+ \\ T^- & -\frac{1}{\sqrt{2}}T^0 \end{pmatrix} .$$

The renormalizable superpontential of TESSM includes only two extra terms as compared to MSSM:

 $W_{\text{TESSM}} = \mu_T \text{Tr}(TT) + \mu_D H_d H_u + \lambda H_d T H_u + y_u U H_u Q - y_d D H_d Q - y_e E H_d L ,$

Soft terms:

$$V_{S} = \left[\mu_{T} B_{T} \operatorname{Tr}(TT) + \mu_{D} B_{D} H_{d} H_{u} + \lambda A_{T} H_{d} T H_{u} + y_{t} A_{t} \tilde{t}_{R}^{*} H_{u} \tilde{Q}_{L} + h.c. \right]$$

+ $m_{T}^{2} \operatorname{Tr}(T^{\dagger}T) + m_{u}^{2} |H_{u}|^{2} + m_{d}^{2} |H_{d}|^{2} + \dots ,$

Espinosa, Quiros '92

Triplet Extension of MSSM

Triplet of $SU(2)_L$ (adjoint, Y = 0) defined by

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}}T^0 & T^+ \\ T^- & -\frac{1}{\sqrt{2}}T^0 \end{pmatrix} .$$

The renormalizable superpontential of TESSM includes only two extra terms as compared to MSSM:

$$W_{\text{TESSM}} = (\mu_T \text{Tr}(TT) + \mu_D H_d H_u + \lambda H_d T H_u + y_u U H_u Q - y_d D H_d Q - y_e E H_d L,$$

Soft terms:

$$V_{S} = \left[\mu_{T} B_{T} \operatorname{Tr}(TT) + \mu_{D} B_{D} H_{d} H_{u} + \lambda A_{T} H_{d} T H_{u} + y_{t} A_{t} \tilde{t}_{R}^{*} H_{u} \tilde{Q}_{L} + h.c. \right]$$

+ $m_{T}^{2} \operatorname{Tr}(T^{\dagger}T) + m_{u}^{2} |H_{u}|^{2} + m_{d}^{2} |H_{d}|^{2} + \dots ,$

Espinosa, Quiros '92

Triplet Extension of MSSM

Triplet of $SU(2)_L$ (adjoint, Y = 0) defined by

$$T = \begin{pmatrix} \frac{1}{\sqrt{2}}T^0 & T^+ \\ T^- & -\frac{1}{\sqrt{2}}T^0 \end{pmatrix} .$$

The renormalizable superpontential of TESSM includes only two extra terms as compared to MSSM:

$$W_{\text{TESSM}} = \mu_T \text{Tr}(TT) + \mu_D H_d H_u + \lambda H_d T H_u + y_u U H_u Q - y_d D H_d Q - y_e E H_d L ,$$

Soft terms:

$$V_{S} = \left[\mu_{T} B_{T} \operatorname{Tr}(TT) + \mu_{D} B_{D} H_{d} H_{u} + \lambda A_{T} H_{d} T H_{u} + y_{t} A_{t} \tilde{t}_{R}^{*} H_{u} \tilde{Q}_{L} + h.c. \right]$$

+ $m_{T}^{2} \operatorname{Tr}(T^{\dagger}T) + m_{u}^{2} |H_{u}|^{2} + m_{d}^{2} |H_{d}|^{2} + \dots ,$

Espinosa, Quiros '92

T parameter & Higgs Mass at TL

Real vevs for the scalar neutral components:

$$\langle T^0 \rangle = \frac{v_T}{\sqrt{2}} , \quad \langle H_u^0 \rangle = \frac{v_u}{\sqrt{2}} , \quad \langle H_d^0 \rangle = \frac{v_d}{\sqrt{2}} ,$$

give non-zero tree level contribution to the EW T parameter $% T^{\prime}$

$$\alpha T = \frac{\delta m_W^2}{m_W^2} = \frac{4v_T^2}{v^2} , \ \alpha T \le 0.2 \quad \Rightarrow \quad v_T \lesssim 5 \text{ GeV} .$$

In the limit of large $|B_D|$ (favoured by stability):

$$m_{h_1^0}^2 \le m_Z^2 \left(c_{2\beta} + \frac{\lambda^2}{g_1^2 + g_2^2} s_{2\beta} \right) , \quad t_\beta = \frac{v_u}{v_d} ,$$

Large values of λ reduce quantum corrections \Rightarrow less fine tuning (FT).

T parameter & Higgs Mass at TL

Real vevs for the scalar neutral components:

$$\langle T^0 \rangle = \frac{v_T}{\sqrt{2}} , \quad \langle H_u^0 \rangle = \frac{v_u}{\sqrt{2}} , \quad \langle H_d^0 \rangle = \frac{v_d}{\sqrt{2}} ,$$

give non-zero tree level contribution to the EW T parameter $% T^{\prime}$

$$\alpha T = \frac{\delta m_W^2}{m_W^2} = \frac{4v_T^2}{v^2} , \ \alpha T \le 0.2 \quad \Rightarrow \quad v_T \lesssim 5 \text{ GeV} .$$

In the limit of large $|B_D|$ (favoured by stability):

$$\begin{split} m_{h_1^0}^2 &\leq m_Z^2 \left(c_{2\beta} + \frac{\lambda^2}{g_1^2 + g_2^2} s_{2\beta} \right), \quad t_\beta = \frac{v_u}{v_d} ,\\ \text{Large values of } \lambda \text{ reduce quantum corrections} \Rightarrow \text{less fine tuning (FT).} \end{split}$$

Higgs Mass at IL

1L contribution to scalar masses obtained from Coleman-Weinberg V

$$V_{\rm CW} = \frac{1}{64\pi^2} \text{STr} \left[\mathcal{M}^4 \left(\log \frac{\mathcal{M}^2}{\mu_r^2} - \frac{3}{2} \right) \right],$$

with \mathcal{M}^2 = mass matrices with fields not replaced by vevs.

Neutral scalar mass matrix 1L contribution, $\Delta M_{h^0}^2$, given by

$$(\Delta \mathcal{M}_{h^0}^2)_{ij} = \left. \frac{\partial^2 V_{\rm CW}(a)}{\partial a_i \partial a_j} \right|_{\rm vev} - \frac{\delta_{ij}}{\langle a_i \rangle} \left. \frac{\partial V_{\rm CW}(a)}{\partial a_i} \right|_{\rm vev} , \ a_i = \left| H_u^0, H_d^0, T^0 \right| / \sqrt{2}$$

Derivatives evaluated numerically at each data point in parameter space.

Espinosa, Quiros '92; Setzer, Spinner '06; Diaz-Cruz et al. '07; SD, Hsieh '08; Delgado et al. '12,'13; Arina et al. '14

S. Di Chiara

SUSY 2014

Parameter Space Scan

To evaluate the phenomenological viability of TESSM we scan randomly the parameter space in the region defined by:

$$\begin{split} &1 \leq t_{\beta} \leq 10 \ , |\lambda| \leq 2 \ , \ |\mu_{D}, \mu_{T}| \leq 2 \, \text{TeV} \ , \ |M_{1}, M_{2}| \leq 1 \, \text{TeV} \ , \\ &|A_{t}, A_{T}, B_{D}, B_{T}| \leq 2 \, \text{TeV} \ , \ 500 \, \text{GeV} \leq m_{Q}, m_{\tilde{t}}, m_{\tilde{b}} \leq 2 \, \text{TeV} \end{split}$$

and stop after collecting 13347 points satisfying exp constraints

$$\begin{split} m_{h_1^0} &= 125.5 \pm 0.1 \,\text{GeV} \; ; \; m_{A_{1,2}}, \; m_{\chi^0_{1,2,3,4,5}} &\geq 65 \,\text{GeV} \; ; \\ m_{h_{2,3}^0}, m_{h_{1,2,3}^\pm}, m_{\chi^\pm_{1,2,3}} &\geq 100 \,\text{GeV} \; ; \; m_{\tilde{t}_{1,2}}, m_{\tilde{b}_{1,2}} &\geq 650 \,\text{GeV} \end{split}$$

 $m_{h_1^0}$ matched to 125.5 GeV by tuning λ .

Perturbativity

We calculate the 2 loop beta functions for $y_t, y_b, y_\tau, \lambda, g_3, g_2, g_1$ (new result) and require those to be less than $2\pi^*$ at the GUT scale (2×10^{16} GeV): 7732 satisfy perturbativity constraint. Then we calculate FT in $m_{H_u}^2^*$ by using its full 1L beta $\beta_{m_{H_u}^2}$ (new result):

$$\mathsf{FT} \equiv \frac{\partial \log v_{\mathsf{EW}}^2}{\partial \log m_{H_u}^2(\Lambda)} , \quad m_{H_u}^2(\Lambda) = m_{H_u}^2(M_Z) + \frac{\beta_{m_{H_u}^2}}{16\pi^2} \log\left(\frac{\Lambda}{M_Z}\right)$$

Red = non-perturbative, yellow = perturbative @ 2L, blue = perturbative; λ too small to reduce FT, but

- no GUT for TESSM
- Spontaneous SUSY breaking might change β

We choose $\Lambda_{UV}=10^4~{\rm TeV}_{\rm SUSY~2014}^{~7}$

Fine Tuning

At $\Lambda_{UV} = 10^4$ TeV 11244 perturbative viable points

 $\tan\beta$ and λ strongly correlated: $\tan\beta \sim 1$ with small FT viable only for large λ

Fine Tuning

Greater heavy stop mass increases FT (as expected)

Small $|A_t|$ with small FT accessible only for large $|\lambda|$ (not in MSSM)

Higgs Physics at LHC

Higgs linear coupling terms accounting for the TESSM contributions:

$$\mathcal{L}_{\text{eff}} = a_{W} \frac{2m_{W}^{2}}{v_{w}} h W_{\mu}^{+} W^{-\mu} + a_{Z} \frac{m_{Z}^{2}}{v_{w}} h Z_{\mu} Z^{\mu} - \sum_{\psi=t,b,\tau} a_{\psi} \frac{m_{\psi}}{v_{w}} h \bar{\psi} \psi$$
$$-a_{\Sigma} \frac{2m_{\Sigma}^{2}}{v_{w}} h \Sigma^{*} \Sigma - a_{S} \frac{2m_{S}^{2}}{v_{w}} h S^{+} S^{-},$$

where Σ and S are, respectively, coloured and charged scalars, with

$$a_S \equiv -3\sum_i^3 \left(F_{h_i^\pm} + F_{\chi_i^\pm}\right) - \sum_j^2 \left(4F_{\tilde{t}_j} + F_{\tilde{b}_j}\right), a_\Sigma \equiv -3\sum_j^2 \left(F_{\tilde{t}_j} + F_{\tilde{b}_j}\right),$$

 F_i being decay amplitudes to diphoton/digluon. We impose also lower bound on $m_{h_2^0}$: 10957 out of 11244 perturbative data points satisfy it.

Higgs Physics at LHC

Higgs linear coupling terms accounting for the TESSM contributions:

$$\mathcal{L}_{\text{eff}} = a_{W} \frac{2m_{W}^{2}}{v_{w}} h W_{\mu}^{+} W^{-\mu} + a_{Z} \frac{m_{Z}^{2}}{v_{w}} h Z_{\mu} Z^{\mu} - \sum_{\psi=t,b,\tau} a_{\psi} \frac{m_{\psi}}{v_{w}} h \bar{\psi} \psi$$
$$-a_{\Sigma} \frac{2m_{\Sigma}^{2}}{v_{w}} h \Sigma^{*} \Sigma - a_{S} \frac{2m_{S}^{2}}{v_{w}} h S^{+} S^{-},$$

where Σ and S are, respectively, coloured and charged scalars, with

$$a_S \equiv -3\sum_i^3 \left(F_{h_i^{\pm}} + F_{\chi_i^{\pm}}\right) - \sum_j^2 \left(4F_{\tilde{t}_j} + F_{\tilde{b}_j}\right), a_\Sigma \equiv -3\sum_j^2 \left(F_{\tilde{t}_j} + F_{\tilde{b}_j}\right),$$

 F_i being decay amplitudes to diphoton/digluon. We impose also lower bound on $m_{h_2^0}$: 10957 out of 11244 perturbative data points satisfy it.

Enhanced & Suppressed $h \rightarrow \gamma \gamma$

We find both enhanced and suppressed Higgs to diphoton decay rates relative to SM: apparently different from results in literature.

Comparison with previous results

Scanning similar^{*} region of parameter space $(\lambda, \mu_D, \mu_T, M_2 > 0$ with light chargino) we get equivalent results (only enhancement)

* SD, Hsieh '08; Delgado et al. '12,'13; Arina et al. '14

```
12
SUSY 2014
```

b to s gamma

Even for low values of $\tan \beta$, $B_s \to X_s \gamma$ branching ratio possibly large: we calculate it at NLO.

Dashed line on measured value, 2σ band shaded in yellow

13

SUSY 2014

Goodness of Fit

We minimize the quantity

$$\chi^2 = \sum_{i} \left(\frac{\mathcal{O}_i^{\exp} - \mathcal{O}_i^{th}}{\sigma_i^{\exp}} \right)^2,$$

including ZZ, WW, $\tau\tau$, bb, $\gamma\gamma$ (all topologies) signal strengths, and $b \rightarrow s\gamma$, for a total of 49 observables. In the limit of small deviations from the optimal values, for $a_W = a_Z = 1, a_{\psi} = a_f$, neglecting $b \rightarrow s\gamma$:

$$\Delta \chi^2 = \chi^2 - \chi^2_{min} = \delta^T \rho^{-1} \delta \,, \, \delta^T = \left(\frac{a_f - \hat{a}_f}{\sigma_f}, \frac{a_S - \hat{a}_S}{\sigma_S}, \frac{a_\Sigma - \hat{a}_\Sigma}{\sigma_\Sigma}\right) \,,$$

with

$$\begin{cases} \hat{a}_f = 1.13 \\ \hat{a}_S = 0.80 \\ \hat{a}_\Sigma = 0.25 \end{cases}, \begin{cases} \sigma_f = 0.17 \\ \sigma_S = 2.79 \\ \sigma_\Sigma = 0.43 \end{cases}, \rho = \begin{pmatrix} 1 & -0.55 & -0.67 \\ -0.55 & 1 & 0.70 \\ -0.67 & 0.70 & 1 \end{pmatrix}.$$

S. Di Chiara

Viable regions

Values of a_u (a_d) for viable data points shown in gray (black), optimal data point=blue star, 68%, 95%, 99%CL regions in green, blue, yellow, respectively.

Viable regions

Viable data points in black: no point matches optimal a_{Σ} value.

In general TESSM under constrained by Higgs physics, but that might change at LHC2.

16

SUSY 2014

chi² vs FT

Large values of λ disfavored as compared to MSSM-like data points, because of $Br(B_s \to X_s \gamma)$. If large enhancement/suppression of $h \to$ $\gamma\gamma$ (ATLAS/CMS) confirmed at LHC2, TESSM well suited to explain (=fit) it.

17

New chi² vs FT

Fit with new CMS data (arxiv:1407.0558,CMS PAS HIG-14-009)!

- TESSM: $\chi^2_{min}/dof = 1.19_{previous} \rightarrow 0.96_{new}$
- SM: $\chi^2_{min}/dof = 1.12_{previous} \rightarrow 0.91_{new}$

18

- TESSM can have much smaller fine-tuning than MSSM
- Large enhancement/suppression of $H \to \gamma \gamma$ both possible
- Large values of λ disfavored as compared to MSSM-like data points, because of $Br(B_s \rightarrow X_s \gamma)$.

If large enhancement/suppression of $h \rightarrow \gamma \gamma$ (ATLAS/CMS) confirmed at LHC2, TESSM well suited to explain (=fit) it.

- TESSM can have much smaller fine-tuning than MSSM
- Large enhancement/suppression of $H\to\gamma\gamma$ both possible
- Large values of λ disfavored as compared to MSSM-like data points, because of $Br(B_s \rightarrow X_s \gamma)$.

If large enhancement/suppression of $h \rightarrow \gamma \gamma$ (ATLAS/CMS) confirmed at LHC2, TESSM well suited to explain (=fit) it.

THANK YOU!

Backup Slides

Higgs to diphoton

$$\Gamma_{h\to\gamma\gamma} = \frac{\alpha_e^2 m_h^3}{256\pi^3 v_w^2} \left| \sum_i N_i e_i^2 a_i F_i \right|^2, \ i = W, t, b, \tau, c, S ,$$

with N_i number of colors, e_i electric charge, and F_i partial amplitudes. In the limit of heavy S^{\pm} , one finds

$$F_{S} = -\frac{1}{3}, \ a_{S} \equiv -3 \left[\sum_{i}^{3} \left(F_{h_{i}^{\pm}} + F_{\chi_{i}^{\pm}} \right) + \sum_{j}^{2} \left(\frac{4}{3} F_{\tilde{t}_{j}} + \frac{1}{3} F_{\tilde{b}_{j}} \right) \right]$$

Gunion et al. - The Higgs Hunter's Guide

21

Higgs to diphoton

$$\Gamma_{h \to \gamma \gamma} = \frac{\alpha_e^2 m_h^3}{256 \pi^3 v_w^2} \left| \sum_i N_i e_i^2 a_i F_i \right|^2, \ i = W, t, b, \tau, c, S ,$$

with N_i number of colors, e_i electric charge, and F_i partial amplitudes. In the limit of heavy S^{\pm} , one finds

$$F_{S} = -\frac{1}{3}, (a_{S} \equiv -3\left[\sum_{i}^{3} \left(F_{h_{i}^{\pm}} + F_{\chi_{i}^{\pm}}\right) + \sum_{j}^{2} \left(\frac{4}{3}F_{\tilde{t}_{j}} + \frac{1}{3}F_{\tilde{b}_{j}}\right)\right].$$

Gunion et al. - The Higgs Hunter's Guide

21

Higgs to 2 gluons & mH constraint

$$\Gamma_{h \to gg} = \frac{\alpha_s^2 m_h^3}{128\pi^3 v_w^2} \left| \sum_i a_i F_i \right|^2 , \quad i = t, b, c, \Sigma ,$$

where

$$a_{\Sigma} \equiv -3\sum_{j}^{2} \left(F_{\tilde{t}_{j}} + F_{\tilde{b}_{j}} \right) \; .$$

Applying the formulas above to the heavy Higgs, we impose the constraint:

$$a'_g \frac{(770 \text{ GeV})^2}{m_{h_2^0}^2} < 0.8 , \quad a'_g = \Gamma_{h_2^0 \to gg} / \Gamma_{h \to gg}^{SM}$$

10957 out of 11244 perturbative data points satisfy it.

22

Higgs to 2 gluons & mH constraint

$$\Gamma_{h \to gg} = \frac{\alpha_s^2 m_h^3}{128\pi^3 v_w^2} \left| \sum_i a_i F_i \right|^2 , \quad i = t, b, c, \Sigma ,$$

where

$$a_{\Sigma} \equiv -3\sum_{j}^{2} \left(F_{\tilde{t}_{j}} + F_{\tilde{b}_{j}}\right) .$$

Applying the formulas above to the heavy Higgs, we impose the constraint:

$$a'_g \frac{(770 \text{ GeV})^2}{m_{h_2^0}^2} < 0.8 , \quad a'_g = \Gamma_{h_2^0 \to gg} / \Gamma_{h \to gg}^{SM}$$

10957 out of 11244 perturbative data points satisfy it.

CMS-HIG-13-014-PAS

22