Testing Higgs sectors beyond the Standard Model with HiggsSignals

Oscar Stål

The Oskar Klein Centre Stockholm University

SUSY2014 - Manchester 2014-07-21

Constraining new physics with Higgs results

Exclusion Limits

Remains an important handle to constrain extended Higgs sectors

→ HiggsBounds

Bechtle, Brein, Heinemeyer, OS, Stefaniak, Weiglein, Williams [0811.4169], [1102.1898], [1311.0055]

Signal measurements

New physics models must also be compatible with the H(125) mass and rate measurements

→ HiggsSignals

Bechtle, Heinemeyer, OS, Stefaniak, Weiglein, [1305.1933]

HiggsSignals

- Like HiggsBounds, HiggsSignals is a public Fortran 90 code Its purpose is to test the compatibility of arbitrary models to current and future *measurements* of signals in Higgs searches
- HiggsSignals uses the same input structure as HiggsBounds (HB)
 -> Very easy to get started for users already familiar with HB
- Authors: P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein
 First release: 1.0.0 (May 2013) Current version: 1.2.0 (March 2014)
- Detailed physics description and user manual published

Bechtle, Heinemeyer, OS, Stefaniak, Weiglein, [1305.1933]

HiggsSignals can be downloaded from:

http://higgsbounds.hepforge.org

SUSY2014

Brief Description

- HiggsSignals tests Higgs sector predictions (user input) against measured Higgs mass(es) and rates from the LHC/Tevatron (experimental input) by evaluating a χ² value (output)
- The aim is to be
 - as model-independent as possible
 not by limiting studies to e.g. effective couplings, but by providing a generic tool that can be used to test (any) specific model
 - as precise as possible Primarily limited by the public information on experimental results
- HiggsSignals has been designed from the beginning to handle multiple Higgs bosons and multiple Higgs signals

Experimental data

The basic quantity used in HiggsSignals is the signal strength

• Experimental *efficiencies* (acceptance) ϵ_i from experimental publications. Default assumption: $\epsilon_i^{\text{model}} = \epsilon_i^{\text{SM}}$

Experimental data

The data format is easily accessible to the user (text files)
 Observables can be added/edited/removed and organized in directories

```
# Published at Moriond 2013.
# Data read in from Fig. 25a.
# No efficiencies are given (for this inclusive result)
# Mass uncertainty contains 0.6 GeV (stat) and 0.5 GeV (syst) error.
#(Gauss: 0.8, linear: 1.1)
2013013101 201301301 1
ATL-CONF-2013-013
LHC, ATL, ATL
(pp)->h->ZZ->41
8 25.3 0.036
1 1
1.1
124.3 124.3 0.1
4 -1
13 23 33 43
       124.3
                       1.293
                                        1.697
                                                        2.194
```

 For the 99% of users who are not interested in this, we (try to) maintain an up-to-date default set

Public version (and this talk) contains results up to March 2014

User input

• To test a model, the user has to provide as input The number of (neutral) Higgs bosons: $N, \quad k = 1 \dots N$

Higgs masses: M_k

Production cross sections: $\sigma_i(pp \to H_k)$

Total decay widths: Γ_k^{tot}

Decay branching ratios: $BR(H_k \to X)$

Optional: Model-specific theoretical uncertainties: $\Delta M_k \ \Delta \sigma_i \ \Delta BR$

- A number of different options exist for the physics input: hadronic cross sections, partonic cross sections, effective couplings
- and also a number of technical interfaces to do it: tabulated data files, SLHA (for MSSM/NMSSM), library of subroutines
 2014-07-21

8

χ^2 Evaluation

- Summing over all observables $\alpha,$ a global χ^2 function is determined for the rates

$$\chi^2_{\mu} = \sum_{\alpha=1}^{N} \chi^2_{\mu,\alpha} = (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})^T \mathbf{C}_{\mu}^{-1} (\hat{\boldsymbol{\mu}} - \boldsymbol{\mu})$$

Correlations of major systematic uncertainties taken into account:

- Luminosity uncertainties (fully correlated within experiments)
- Theoretical rate uncertainties (fully correlated for same channels)

Other (exp.) correlations could be included similarly *if* they were publicly available

• Total χ^2 with contribution from mass observables ($\gamma\gamma/ZZ$) added:

$$\chi^2_{\rm tot} = \chi^2_\mu + \chi^2_m$$

Different Higgs mass pdfs (Gaussian, box, box+Gaussian) available

Multiple Higgs bosons

- In a multi-Higgs theory, e.g. the MSSM, any neutral Higgs boson could in principle be responsible for the observed signal(s)
- The theoretical prediction μ used for a particular observable α is determined by *assigning* one or more Higgs bosons to the signal, based on their masses:

$$|m_i - \hat{m}_{\alpha}| \le \Lambda \sqrt{(\Delta m_i)^2 + (\Delta \hat{m}_{\alpha})^2},$$

 Λ is a tuning parameter of O(1)

 When multiple Higgs bosons are assigned to the same signal, the rate is determined by an incoherent sum (interference neglected)

$$\mu_{\alpha} = \sum_{i} (\mu_{\alpha})_{i}$$

- Observables with no assigned Higgs bosons contribute a χ^2 value corresponding to the prediction μ = 0

Applications

Coupling scale factors

• Fit of universal coupling scale factors, κ_i (SM: $\kappa_i = 1$) Assumes single Higgs boson, SM coupling structure

Official ATLAS/CMS coupling fits used

LHC Higgs XS WG [1209.0040], [1307.1347]

CMS-PAS-HIG-13-005 to validate HiggsSignals procedure 2σ κ_V 1σ ATL-CONF-2013-034 HiggsSignals-1.1.0 10 using ATLAS Moriond 2013 results 2σ $H \rightarrow WW$ κ_u $H \rightarrow ZZ$ 8 $H \rightarrow \gamma \gamma$ ♦ SM κ_d 6 1σ HV+Hpp^U 2σ κ_{ℓ} 4 1σ 2σ 2 κ_q 1σ 0 2σ κ_{γ} 1σ -2 2 3 2 3 0 $\mu_{ggF+ttH}$ 2014-07-21 SUSY2014

Coupling scale factors

Bechtle, Heinemeyer, OS, Stefaniak, Weiglein, [1403.1582]

Full data from ATLAS/CDF/CMS/D0 used simultaneously (80 observables)

Fit I: universal κ	Fit II: κ_V , κ_F	Fit III: κ_W , κ_Z , κ_F
Fit IV: κ_V , κ_u , κ_d , κ_ℓ	Fit V: κ_g , κ_γ	Fit VI: κ_V , κ_u , κ_d , κ_ℓ , κ_g , κ_γ

Fit	κ_W	κ_Z	κ_u	κ_d	κ_ℓ	κ_{g}	κ_γ	${ m BR}_{H ightarrow { m inv}}^{95\% { m CL}}$	χ^2/ndf	$\mathcal P$ -value
I	1.01 =	= 1.01 =	= 1.01 =	= 1.01 =	= 1.01	1.01	1.01	< 37%	84.3/79	32.2%
П	1.02 =	= 1.02	0.95 =	= 0.95 =	= 0.95	0.95	1.04	< 37%	84.0/78	30.1%
Ш	1.00	1.06	0.93 =	= 0.93 =	= 0.93	0.93	1.02	< 36%	83.7/77	28.2%
IV	1.00 =	= 1.00	0.84	0.84	0.99	0.84	1.04	< 39%	82.8/76	27.8%
V	1.00 =	= 1.00 =	= 1.00 =	= 1.00 =	= 1.00	0.92	1.14	< 20%	82.6/78	33.9%
VI	1.00 =	= 1.00	1.42	0.86	1.05	0.88	1.09	< 39%	79.9/74	29.9%

Best fit values are very close to unity

SM: χ²/ndf = 84.3/80, P = 35.0%

- Invisible branching ratio < 40% (at 95% CL)
- None of the deformations yield a fit quantitatively better than the SM

Most general kappa fit

SUSY2014

MSSM

- We now consider the MSSM with all soft parameters specified at low scale (pMSSM)
- Higgs spectrum, cross sections, and decay branching ratios are evaluated directly in the full model using FeynHiggs
 - [1312.4937] -> No simplifications, effective coupling frameworks or analytic approximations are necessary!
- Higgs Constraints (parts I and II) HiggsSignals χ^2 information on the H(125) signal + LEP χ^2 information (light Higgs) + HiggsBounds Direct search limits (95% C.L.)
- Low-energy observables (part II only) Flavor constraints ($B \to X_s \gamma$, $B_s \to \mu^+ \mu^-$, $B \to \tau \nu_{\tau}$) SuperIso Mahmoudi, [0710.2067] g-2 muon Heinemeyer, Hollik, Weiglein, Zeune, [1311.1663] M_{W} 2014-07-21 15

Hahn, Heinemeyer, Hollik, Rzehak, Weiglein

M_h-max scenario

• One of several benchmark scenarios for MSSM Higgs searches at LHC Maximizes light Higgs mass through large stop mixing $X_t = A_t - \mu \cot \beta = 2 M_S$ $M_S = 1 \text{ TeV}$

Carena, Heinemeyer, OS, Wagner, Weiglein, [1302.7033]

SUSY2014

M_h-mod+ scenario

 Modified stop mixing to yield M_h compatible with signal over large parts of the parameter space

Global pMSSM analysis

Analysis of individual benchmark scenarios indicate:

- decoupling limit strongly favored -> SM-like rates

- M_A > 400 GeV (68% C.L.), > 320 GeV (95% C.L.)

Does this picture persist in a global scan of the (TeV-scale) pMSSM?

Parameter	Minimum	Maximum
$M_A \; [\text{GeV}]$	90	1000
aneta	1	60
$\mu \; [\text{GeV}]$	200	4000
$M_{\tilde{Q}_3}$ [GeV]	200	1500
$\check{M}_{\tilde{\ell}}$ [GeV]	200	1500
$A_f \; [\text{GeV}]$	-3 $M_{ ilde{Q}_3}$	$3M_{ ilde{Q}_3}$
$M_1 \; [\text{GeV}]$	100	M_2
$M_2 \; [\mathrm{GeV}]$	200	500
	$M_{\tilde{Q}_{1,2}} = m_{\tilde{g}}$	= 1500 GeV

- Higgs constraints as before (HB+HS), low-energy observables (LEO) included into total χ^2

2014-07-21

SUSY2014

pMSSM Global Analysis: Results

- SM and MSSM provide similar quality of fit for the Higgs observables, MSSM does better with low-energy data included
- Decoupling scenario of benchmarks reproduced: $M_A > 250 \text{ GeV} (95\% \text{ C.L.}), M_A > 400 \text{ GeV} (68\% \text{ C.L.})$ Wide range of tan β allowed 2014-07-21 SUSY2014

Best fit point

• Overall results is very SM-like, the ~10% enhancement of $\gamma\gamma$ from light staus also gives better fit to (g-2)_µ due to assumed slepton universality

SUSY2014

Preliminary

Implications for the stop sector

X_t = 0 strongly disfavored (unless stops multi-TeV)

- Both signs of X_t allowed in the most favored region
- Lower limit on lightest stop mass from Higgs physics ($m_{\tilde{t}_1} \gtrsim 300 \,\mathrm{GeV}$) complementary to limits from direct searches

Preliminary

Conclusions

- The public code HiggsSignals makes use of LHC/Tevatron measurements to evaluate a χ^2 function comparing Higgs data <-> theory for BSM models
- Our general strategy for this code is to
 - be model-independent (allow testing different explicit BSM models)
 - be as precise as possible (using public information)
 - keep it up-to-date with latest results
- The procedure and code is validated against official CMS/ATLAS fits
- Rescaling of SM Higgs couplings was analyzed (six scenarios) – no indication in the combined result of deviations from $\kappa_i = 1$
- MSSM benchmark scenarios show best fit in decoupling region, rates for lightest Higgs very close to SM -> Lower limit on M_A More detailed results will follow from the global pMSSM fit – stay tuned!

http://higgsbounds.hepforge.org

SUSY2014

Backup

Mass-Centered χ^2 method

- Compares model prediction to measured data directly at the *predicted* Higgs mass values
- Combines rate predictions for Higgs bosons that are "nearby" in mass (within exp. resolution)
- Applicability of this method is currently limited by available exp. results, e.g. M_H < 200 GeV

Can be used simultaneously with peak-centered method for Higgs bosons that have not been assigned to any signal

Derived scale factors

- Interim framework proposed by LHCXSWG for fitting (small) deviations from the SM Higgs couplings
- Assumes structure of couplings unchanged from SM, only coupling strengths modified
- Large deviations from the SM should be interpreted with care

$$\kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) = \frac{\kappa_{\rm t}^2 \cdot \sigma_{\rm ggH}^{\rm tt}(m_{\rm H}) + \kappa_{\rm b}^2 \cdot \sigma_{\rm ggH}^{\rm bb}(m_{\rm H}) + \kappa_{\rm t}\kappa_{\rm b} \cdot \sigma_{\rm ggH}^{\rm tb}(m_{\rm H})}{\sigma_{\rm ggH}^{\rm tt}(m_{\rm H}) + \sigma_{\rm ggH}^{\rm bb}(m_{\rm H}) + \sigma_{\rm ggH}^{\rm tb}(m_{\rm H})}$$
$$\kappa_{\gamma}^2(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\tau},\kappa_{\rm W},m_{\rm H}) = \frac{\sum_{i,j} \kappa_i \kappa_j \cdot \Gamma_{\gamma\gamma}^{ij}(m_{\rm H})}{\sum_{i,j} \Gamma_{\gamma\gamma}^{ij}(m_{\rm H})}$$

Higgs coupling scale factors

Produc	tion	modes	Detectable	e dec	cay modes
$rac{\sigma_{ m ggH}}{\sigma_{ m ggH}^{ m SM}}$	=	$\begin{cases} \kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) \\ \kappa_{\rm g}^2 \end{cases}$	$\frac{\Gamma_{WW^{(*)}}}{\Gamma_{WW^{(*)}}^{SM}}$	=	κ_W^2
$rac{\sigma_{\mathrm{VBF}}}{\sigma_{\mathrm{VBF}}^{\mathrm{SM}}}$	=	$\kappa_{\rm VBF}^2(\kappa_{\rm W},\kappa_{\rm Z},m_{\rm H})$	$\frac{\Gamma_{\rm ZZ^{(*)}}}{\Gamma^{\rm SM}_{\rm ZZ^{(*)}}}$	=	κ_Z^2
$\frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}}$	=	κ_{W}^{2}	$\frac{\Gamma_{b\overline{b}}}{\Gamma^{SM}}$	_	κ_b^2
$rac{\sigma_{ m ZH}}{\sigma_{ m ZH}^{ m SM}}$	=	κ_Z^2	$\frac{\Gamma_{bb}}{\Gamma_{\tau^-\tau^+}}$	=	κ^2
$\frac{\sigma_{t\overline{t}H}}{-SM}$	=	$\kappa_{ m t}^2$	$\Gamma^{SM}_{\tau^-\tau^+}$		-τ
$\sigma_{ m t\bar{t}H}$			$\frac{\Gamma_{\gamma\gamma}}{\Gamma^{SM}_{\gamma\gamma}}$	=	$\begin{cases} \kappa_{\gamma}^{2}(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\tau},\kappa_{\rm W},m_{\rm H}) \\ \kappa_{\gamma}^{2} \end{cases}$
			$\frac{\Gamma_{Z\gamma}}{\Gamma^{SM}_{Z\gamma}}$	=	$\begin{cases} \kappa_{(Z\gamma)}^{2}(\kappa_{\rm b},\kappa_{\rm t},\kappa_{\rm \tau},\kappa_{\rm W},m_{\rm H}) \\ \kappa_{(Z\gamma)}^{2} \end{cases}$

Parameter values for MSSM benchmark scenarios

Parameter	m_h^{\max}	$m_h^{\rm mod+}$	$m_h^{\mathrm{mod}-}$	$light\ stop$	$light\ stau$	au-phobic	$low-M_H$
m_t	173.2	173.2	173.2	173.2	173.2	173.2	173.2
M_A	varied	varied	varied	varied	varied	varied	110
$\tan\beta$	varied	varied	varied	varied	varied	varied	varied
$M_{\rm SUSY}$	1000	1000	1000	500	1000	1500	1500
$M_{\tilde{l}_3}$	1000	1000	1000	1000	245 (250)	500	1000
$X_t^{ m OS}/M_{ m SUSY}$	2.0	1.5	-1.9	2.0	1.6	2.45	2.45
$X_t^{\overline{\rm MS}}/M_{\rm SUSY}$	$\sqrt{6}$	1.6	-2.2	2.2	1.7	2.9	2.9
A_t			Giv	en by $A_t = X$	$t_t + \mu \cot \beta$		
A_b	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$	$= A_t$
A_{τ}	$= A_t$	$= A_t$	$= A_t$	$= A_t$	0	0	$= A_t$
μ	200	200	200	350	500 (450)	2000	varied
M_1			Fixed	l by GUT rela	ation to M_2		
M_2	200	200	200	350	200 (400)	200	200
$m_{ ilde{g}}$	1500	1500	1500	1500	1500	1500	1500
$M_{\tilde{q}_{1,2}}$	1500	1500	1500	1500	1500	1500	1500
$M_{\tilde{l}_{1,2}}$	500	500	500	500	500	500	500
$A_{f \neq t,b, au}$	0	0	0	0	0	0	0

pMSSM fit

LEO	O_i	χ_h^2	Pull
${\rm BR}(B \to X_s \gamma) \times 10^4$	3.55	0.03	0.18
${\rm BR}(B_s\to\mu^+\mu^-)\times 10^9$	3.66	0.77	0.88
${\rm BR}(B_u\to\tau\nu_\tau)\times 10^4$	0.78	2.00	-1.41
$\delta a_{\mu} \times 10^9$	2.76	0.09	-0.29
M_W [GeV]	80.382	0.01	-0.10

	Light Higgs case			Light Higgs case			Heavy Higgs case			
	Original 2012 analysis			Up	Updated analysis			Original 2012 analysis		
Parameter		Best fit			Best fit			Best fit		
$M_A \; [\text{GeV}]$	300	669	860	398	858	(1000)	120.5	124.2	128.0	
aneta	15	16.5	26	9.8	29	(60)	9.7	9.8	10.8	
$\mu [{\rm GeV}]$	1900	2640	(3000)	845	2128	3824	1899	2120	2350	
$M_{\tilde{q}_3}$ [GeV]	450	1100	(1500)	637	1424	1481	580	670	740	
$M_{\tilde{l}_3}$ [GeV]	250	285	(1500)	230	356	463	(200)	323	(1500)	
A_f [GeV]	1100	2569	3600	1249	2315	3524	1450	1668	1840	
$M_2 \; [\text{GeV}]$	(200)	201	450	(200)	229	(500)	(200)	304	370	
$M_h \; [\text{GeV}]$	122.2	126.1	127.1	124.6	125.5	126.4	63.0	65.3	72.0	
$M_H \; [\text{GeV}]$	280	665	860	386	858	(1000)	123.9	125.8	126.4	
$M_{H^{\pm}}$ [GeV]	310	673	860	405	858	(1000)	136.5	138.8	141.5	