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SM Best Fit-1Ldt = 20.3 fb∫ = 8 TeV s

-1Ldt = 4.6-4.8 fb∫ = 7 TeV s

ATLAS Preliminary

Discovery of a Higgs boson with mH = 125± 2 GeV and couplings within O(10%) of the
SM predictions.

Opportunity in the search of (or constraining) BSM physics through Higgs portal.
Precision Higgs Study (Higgcision).
Search for additional Higgses.



Two Higgs Doublet Model

Several theoretical reasons to go beyond the SM Higgs sector.
Any scalar sector in a local SU(2)× U(1) gauge theory must be consistent with ρexp ' 1.

With n Higgs multiplets, ρtree =
∑n

i=1[Ti (Ti +1)−Y 2
i ]vi

2
∑n

i=1 Y 2
i vi

.

Simplest choice: Add multiplets with T (T + 1) = 3Y 2.
SM: One SU(2)L doublet φ with Y = ± 1

2 .

2HDM: Two SU(2)L doublets φi =

(
φ+

i
φ0

i

)
(with i = 1, 2).

General 2HDM potential:

V (φ1, φ2) = −µ2
1(φ†1φ1)− µ2

2(φ†2φ2)−
[
m2

12(φ†1φ2) + H.c.
]

+λ1(φ†1φ1)2 + λ2(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2) + λ4(φ†1φ2)(φ†2φ1)

+

[
1
2
λ5(φ†1φ2)2 + λ6(φ†1φ1)(φ†1φ2) + λ7(φ†1φ2)(φ†2φ2) + H.c.

]
.

Four real mass parameters µ2
1,2, Re(m2

12), Im(m2
12), and 10 real quartic couplings λ1,2,3,4,

Re(λ5,6,7), Im(λ5,6,7).
Explore possible symmetries relating the quartic couplings.
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An Alternative Formulation of the 2HDM Potential

Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis ’11; Nishi ’11]

Φ =


φ1
φ2

iσ2φ∗1
iσ2φ∗2

 .

Convenient to go over to a 6-dimensional bilinear field space [Pilaftsis ’12]

RA = Φ†ΣAΦ (A = 0, 1, 2, 3, 4, 5),

where the 8× 8 matrices ΣA can be expressed in terms of the Pauli matrices σ1,2,3 and
σ0 = 12:

Σ0 =
1
2
σ0 ⊗ σ0 ⊗ σ0 ≡ 1

2
18, Σ1 =

1
2
σ0 ⊗ σ1 ⊗ σ0, Σ2 =

1
2
σ3 ⊗ σ2 ⊗ σ0,

Σ3 =
1
2
σ0 ⊗ σ3 ⊗ σ0, Σ4 = −1

2
σ2 ⊗ σ2 ⊗ σ0, Σ5 = −1

2
σ1 ⊗ σ2 ⊗ σ0.

Realizes an SO(1, 5) symmetry group.



An Alternative Formulation of the 2HDM Potential

V = −1
2

MARA +
1
4

RALA
BRB ,

where

MA =
(
µ2

1 + µ2
2, 2Re(m2

12), −2Im(m2
12), µ2

1 − µ2
2, 0, 0

)
,

RA =



φ†1φ1 + φ†2φ2

φ†1φ2 + φ†2φ1

−i(φ†1φ2 − φ†2φ1)

φ†1φ1 − φ†2φ2

φT
1 iσ2φ2 − φ†2 iσ2φ∗1

−i(φT
1 iσ2φ2 + φ†2 iσ2φ∗1 )


,

LA
B =



λ1 + λ2 + λ3 Re(λ6 + λ7) −Im(λ6 + λ7) λ1 − λ2 0 0
Re(λ6 + λ7) λ4 + Re(λ5) −Im(λ5) Re(λ6 − λ7) 0 0
−Im(λ6 + λ7) −Im(λ5) λ4 − Re(λ5) −Im(λ6 − λ7) 0 0
λ1 − λ2 Re(λ6 − λ7) −Im(λ6 − λ7) λ1 + λ2 − λ3 0 0

0 0 0 0 0 0
0 0 0 0 0 0





Symmetry Classifications of the 2HDM Potential

Three classes of accidental symmetries of the 2HDM potential:

Higgs Family (HF) Symmetries involving transformations of φ1,2 only (but not φ∗1,2),
e.g. Z2 [Glashow, Weinberg ’58], U(1)PQ [Peccei, Quinn ’77], SU(2)HF [Deshpande, Ma ’78].

CP Symmetries relating φ1,2 to φ∗1,2, e.g. φ1(2) → φ∗1(2)
(CP1) [Lee ’73],

φ1(2) → (−)φ∗2(1)
(CP2) [Davidson, Haber ’05], CP1 combined with SO(2)HF (CP3) [Ivanov

’08; Ferreira, Haber, Silva ’09].

Mixed HF and CP transformations that leave the gauge-kinetic terms of φ1,2 invariant
[Battye, Brawn, Pilaftsis ’11], e.g. O(8) and O(4)⊗O(4) in real field space [Deshpande, Ma ’78].

Maximum of 13 distinct accidental symmetries. [Battye, Brawn, Pilaftsis ’11]

Can derive explicit transformation relations based on the bilinear scalar field formalism.
[Pilaftsis ’12]
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Table 1
Parameter relations for the 13 accidental symmetries [1] related to the U(1)Y -invariant 2HDM potential in the diagonally reduced basis, where Im λ5 = 0 and λ6 = λ7. A dash
signifies the absence of a constraint.

No. Symmetry µ2
1 µ2

2 m2
12 λ1 λ2 λ3 λ4 Reλ5 λ6 = λ7

1 Z2 × O(2) – – Real – – – – – Real
2 (Z2)2 × SO(2) – – 0 – – – – – 0
3 (Z2)3 × O(2) – µ2

1 0 – λ1 – – – 0
4 O(2) × O(2) – – 0 – – – – 0 0
5 Z2 × [O(2)]2 – µ2

1 0 – λ1 – – 2λ1 − λ34 0
6 O(3) × O(2) – µ2

1 0 – λ1 – 2λ1 − λ3 0 0
7 SO(3) – – Real – – – – λ4 Real
8 Z2 × O(3) – µ2

1 Real – λ1 – – λ4 Real
9 (Z2)2 × SO(3) – µ2

1 0 – λ1 – – ±λ4 0
10 O(2) × O(3) – µ2

1 0 – λ1 2λ1 – 0 0
11 SO(4) – – 0 – – – 0 0 0
12 Z2 × O(4) – µ2

1 0 – λ1 – 0 0 0
13 SO(5) – µ2

1 0 – λ1 2λ1 0 0 0

T 2 =

⎛

⎜⎜⎜⎝

0 0 i 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
, T 3 =

⎛

⎜⎜⎜⎝

0 −i 0 0 0
i 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
,

T 4 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 −i 0
0 0 0 0 0
0 i 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
, T 5 =

⎛

⎜⎜⎜⎝

0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0

⎞

⎟⎟⎟⎠
,

T 6 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 −i 0 0 0

⎞

⎟⎟⎟⎠
, T 7 =

⎛

⎜⎜⎜⎝

0 0 0 i 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
,

T 8 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 −i
0 0 0 0 0
0 0 i 0 0

⎞

⎟⎟⎟⎠
, T 9 =

⎛

⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 −i 0
0 0 i 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎠
.

(14)

These are exactly the 10 generators of the orthogonal SO(5) group.
Consequently, the relation (13) represents one of the central results
of this Letter, as it gives an one-to-one correspondence between
the generators of SUM(4) and those of SO(5). Hence, we get the
isomorphism: SO(5) ∼= SUM(4)/Z2, between the Φ- and the R I -
space. This result offers firm proof of the equivalence relation,
between SUM(4) and SO(5), presented in [1].

It is now obvious that the maximal reparameterization group
acting on the Φ-space in the 2HDM potential, which leaves the
SU(2)L gauge kinetic term of Φ canonical, is

GΦ
2HDM =

(
SUM(4)/Z2

)
⊗ SU(2)L . (15)

The group GΦ
2HDM includes the U(1)Y hypercharge group through

the generator K 0 of SUM(4), as well as 9 other generators related
to HF/CP transformations. On the other hand, the SU(2)L group
generators may be represented as σ 0 ⊗ σ 0 ⊗ (σ 1,2,3/2), which
manifestly commute with all generators of SUM(4). Finally, the
quotient factor Z2 appearing in (15) is needed to avoid double cov-
ering the group GΦ

2HDM in the Φ-space.
In order to classify all possible HF/CP accidental symmetries

of the 2HDM potential, it is more convenient to go over to the
5-dimensional bilinear space R I , where the maximal reparameter-
ization group is G R

2HDM = SO(5), which leaves R0 invariant. Given

that SO(5) is the maximal symmetry group in the R I -space, Ref. [1]
classifies all possible symmetries derived from SO(5), including all
its proper, improper and semi-simple subgroups. Such an analy-
sis led to a maximum of 13 accidental symmetries for the 2HDM
potential, which are presented in Table 1. The same table shows
the parameter restrictions for each of the 13 symmetries in a
specific bilinear basis [15], where LI J is made diagonal by an
SO(3) ⊂ SO(5) rotation [24]. In this diagonally reduced basis, one
has the restrictions:

Im λ5 = 0, λ6 = λ7, (16)

thus reducing to 7 the number of independent quartic couplings
for the 2HDM potential. From Table 1, we observe that all 13
symmetries include SO(2) ∼= U(1)Y as a subgroup. Note that the
parameter relations pertinent to the 13 symmetries are chosen, so
as to manifestly lead to CP-invariant scalar potentials.

It is worth commenting that only two discrete factors, (Z2)
2

and (Z2)
4, are allowed, as being the only admissible subgroups

of SO(5), where Z2 is the reflection group of one of the compo-
nents R I . More explicitly, the standard CP (or CP1) discrete sym-
metry may be represented as $CP1 = C = σ 2 ⊗ σ 0 ⊗ σ 2 in the Φ-
space, and the usual discrete ‘Z2’ (CP2) symmetry as $Z2 = σ 0 ⊗
σ 3 ⊗ σ 0 ($CP2 = σ 2 ⊗ σ 2 ⊗ σ 0). In the R I -space, the transforma-
tion matrices (or the generating group elements) associated with
the CP1, ‘Z2’ and CP2 discrete symmetries are respectively given by

DCP1 = diag(1,−1,1,1,−1),

D Z2 = diag(−1,−1,1,−1,−1),

DCP2 = diag(−1,−1,−1,1,−1). (17)

As a consequence, both the traditional ‘Z2’ symmetry and CP2 are
actually isomorphic to the (Z2)

4 symmetry.
It is straightforward to identify the generators pertinent to the

continuous HF/CP symmetries of the 2HDM potential in the diago-
nally reduced basis (16). Specifically, the 2HDM potential possesses
a continuous symmetry, iff
[
T a,L

]
= 0, T aM = 0, (18)

where L and M denote the 5 × 5 matrix LI J and the 5-dimensional
vector MI in the reduced basis, respectively. Given the one-to-one
correspondence between T a and K a generators, it is not difficult
to determine the transformation relations associated with a given
continuous HF/CP symmetry in the Φ-space through:

Φ → Φ ′ = eiθa K a
Φ, (19)

[Pilaftsis ’12]

SO(5) is the maximal symmetry group in the bilinear field space which leaves R0 invariant.
In a specific bilinear basis [Gunion, Haber ’05], where LIJ is made diagonal by an
SO(3) ⊂ SO(5) rotation, Im(λ5) = 0 and λ6 = λ7.
7 independent quartic couplings for the U(1)Y -invariant 2HDM potential.
SO(5) is isomorphic to Sp(4)/Z2, which gives a one-to-one correspondence between the
generators of the maximal reparametrization groups GR

2HDM = SO(5) and GΦ
2HDM = Sp(4).

[PSBD, Pilaftsis ’14]
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Table 2
Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)Y -invariant 2HDM potential. For each symmetry, the
maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the
Goldstone theorem.

No. Symmetry Generators
T a ↔ K a

Discrete group
elements

Maximally broken
SO(5) generators

Number of
pseudo-Goldstone bosons

1 Z2 × O(2) T 0 DCP1 – 0
2 (Z2)2 × SO(2) T 0 D Z2 – 0
3 (Z2)3 × O(2) T 0 DCP2 – 0
4 O(2) × O(2) T 3, T 0 – T 3 1 (a)
5 Z2 × [O(2)]2 T 2, T 0 DCP1 T 2 1 (h)
6 O(3) × O(2) T 1,2,3, T 0 – T 1,2 2 (h,a)
7 SO(3) T 0,4,6 – T 4,6 2 (h±)
8 Z2 × O(3) T 0,4,6 D Z2 · DCP2 T 4,6 2 (h±)
9 (Z2)2 × SO(3) T 0,5,7 DCP1 · DCP2 T 5,7 2 (h±)

10 O(2) × O(3) T 3, T 0,8,9 – T 3 1 (a)
11 SO(4) T 0,3,4,5,6,7 – T 3,5,7 3 (a,h±)
12 Z2 × O(4) T 0,3,4,5,6,7 D Z2 · DCP2 T 3,5,7 3 (a,h±)
13 SO(5) T 0,1,2,...,9 – T 1,2,8,9 4 (h,a,h±)

where θa ∈ [0,2π) are the group parameters of the SUM(4)/Z2
group.

It is interesting to determine the SO(5) generators related to a
particular accidental symmetry that remain (un)broken after elec-
troweak symmetry breaking. In this way, we can find the num-
ber of pseudo-Goldstone bosons predicted, according to the Gold-
stone theorem. In the 5-dimensional bilinear R I -space, a neutral
vacuum solution in its standard basis implies that φT

1 iσ 2φ2 = 0,
i.e. R4 = R5 = 0, or equivalently RµRµ = 0. Alternatively, a stan-
dard basis for writing down a neutral vacuum solution R I

0 may be

defined through the relation: T 0
I J R J

0 = 0. Consequently, an SO(5)

generator T a remains unbroken after electroweak symmetry break-
ing, if it satisfies the condition:

T a
I J R J

0 = 0. (20)

By definition, the hypercharge generator T 0 will always be unbro-
ken when acting on a neutral vacuum solution R I

0. This should not
be too surprising, as T 0 is equivalent to the electromagnetic gener-
ator, given by Q em = σ 0 ⊗ σ 0 ⊗ (σ 3/2) + K 0 in the Φ-space, once
we notice that the weak isospin generator σ 0 ⊗ σ 0 ⊗ (σ 3/2) has
no effect on the SU(2)L gauge-invariant 5-vector R I .

In Table 2, we exhibit the SO(5) (SUM(4)) symmetry generators
T a (K a) [cf. (14), (10)] and the discrete group elements [cf. (17)]
generating the 13 accidental symmetries of the U(1)Y -invariant
2HDM potential. We also display the maximally broken SO(5) gen-
erators compatible with a neutral vacuum for each symmetry,
along with the maximal number of pseudo-Goldstone bosons that
result from the Goldstone theorem. The pseudo-Goldstone bosons
associated with the maximal breaking of each symmetry have also
been identified in the last column of Table 2, using the explicit
analytic results presented in [25] for the minimization conditions
and the scalar mass matrices. Thus, we find that as well as CP1 ≡
Z2 × O(2), the symmetries SO(3) and Z2 × O(3) can maximally
break spontaneously via a CP non-invariant vacuum. Unlike in the
CP1 case, spontaneous breakdown of these two new symmetries
may lead to two pseudo-Goldstone bosons, i.e. the two charged
Higgs bosons h± . For the symmetry (Z2)

2 × SO(3), the maximal
breaking pattern leading to the two charged pseudo-Goldstone
bosons h± is obtained, when the restriction λ4 = −Reλ5 > 0 is
taken from Table 1.

On the other hand, it is worth reiterating that the symme-
try SO(5) relates to the larger O(8) group [6] in the real field
space, once the latter gets further restricted such that the SU(2)L

gauge canonical form of the Φ kinetic term is maintained. In the
5-dimensional bilinear R I -space, SO(5) can break down to SO(4),
giving rise to four pseudo-Goldstone bosons: one of the two CP-
even Higgs bosons denoted as h, the CP-odd scalar a and the two
charged Higgs bosons h± . This is consistent with breaking pat-
tern of O(8) → O(7) in the Φ-space, leading to seven Goldstone
bosons, which include the three would-be Goldstone bosons asso-
ciated with the longitudinal polarizations of the W ± and Z bosons.
However, one gets a different result within the U (1)Y -restricted
SO(3) bilinear formalism of [16–18,21,24]. The higher HF/CP sym-
metry SO(5) appears as SO(3)HF in the U(1)Y -restricted bilinear
formalism, and according to Table 2 (symmetry No. 6), it may
break down to SO(2), giving rise to only two pseudo-Goldstone
bosons.

Another illustrative example is the symmetry SO(4), which is
equivalent to O(4) ⊗ O(4) [6] in the scalar-field space, where one
of the O(4) factors describes gauge-group transformations. As can
be seen from Table 2, the symmetry SO(4) may break to SO(3),
giving rise to three pseudo-Goldstone bosons: the CP-odd scalar a
and the two charged Higgs bosons h± . Again, this breaking sce-
nario cannot be clearly distinguished from a scenario based on
CP3 ≡ Z2 × [O(2)]2, which leads to an erroneous breaking pattern
predicting only one pseudo-Goldstone boson, within the U(1)Y -
constrained SO(3) bilinear formalism.

It is interesting to remark that the Majorana-constrained uni-
tary group SUM(4) in (15) contains the custodial symmetry
group SU(2)C [26] (for recent studies, see [27,23]). In the Φ-
basis, there are three independent realizations of SU(2)C induced
by the generators: (i) K 0,4,6; (ii) K 0,5,7; (iii) K 0,8,9. As stated in
Table 2, the HF/CP accidental symmetries 7–13 contain at least
one of the three generator sets (i), (ii) and (iii), and are therefore
custodial symmetric. As a consequence of the custodial symme-
try, the W ± and Z bosons are degenerate in mass and Veltman’s
ρ-parameter [28] retains its tree-level value ρ = 1, to all orders in
perturbation theory. As happens in the SM, however, the U(1)Y hy-
percharge and Yukawa interactions violate explicitly the custodial
symmetry in the 2HDM.

In summary, we have presented the symmetry generators K a

in (10) that describe the 13 accidental symmetries [1] of the
U(1)Y -invariant 2HDM potential (1) in the original scalar field
space Φ , by means of (19). We have derived an exact symmetry
relation in (13), which gives the one-to-one correspondence be-
tween the SUM(4) generators K a in the Φ-space and the SO(5)
generators T a in the R I -space. In Table 2, we have explicitly pre-

[Pilaftsis ’12]

T a and K a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).

T 0 is the hypercharge generator in R-space, which is equivalent to the electromagnetic
generator Qem = 1

2σ
0 ⊗ σ0 ⊗ σ3 + K 0 in Φ-space.

Sp(4) contains the custodial symmetry group SU(2)C .

Three independent realizations of custodial symmetry induced by
(i) K 0,4,6, (ii) K 0,5,7, (iii) K 0,8,9.



Symmetry Generators

[Pilaftsis ’12]

T a and K a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).

T 0 is the hypercharge generator in R-space, which is equivalent to the electromagnetic
generator Qem = 1

2σ
0 ⊗ σ0 ⊗ σ3 + K 0 in Φ-space.

Sp(4) contains the custodial symmetry group SU(2)C .

Three independent realizations of custodial symmetry induced by
(i) K 0,4,6, (ii) K 0,5,7, (iii) K 0,8,9.



Higgs Spectra

Consider normal vacua with real vevs v1,2, where
√

v2
1 + v2

2 = vSM and tanβ = v2/v1.

Eight real scalar fields: φj =

(
φ+

j
1√
2

(vj + ρj + iηj )

)
(with j = 1, 2).

After EWSB, three Goldstone bosons (G±,G0), which are eaten by W± and Z , and five
physical scalar fields: two CP-even (h,H), one CP-odd (a) and two charged (h±).
In the charged sector,(

G±

h±

)
=

(
cosβ sinβ
− sinβ cosβ

)(
φ±1
φ±2

)
.

with M2
h± =

1
sβcβ

[
Re(m2

12)− 1
2

(
{λ4 + Re(λ5)} sβcβ + Re(λ6)c2

β + Re(λ7)s2
β

)]
.

In the CP-odd sector,(
G0

a

)
=

(
cosβ sinβ
− sinβ cosβ

)(
η1
η2

)
.

with M2
a =

1
sβcβ

[
Re(m2

12)− v2
(

Re(λ5)sβcβ +
1
2

{
Re(λ6)c2

β + Re(λ7)s2
β

})]
= M2

h± +
1
2

[λ4 − Re(λ5)] v2.



Higgs Spectra

In the CP-even sector,(
H
h

)
=

(
cosα sinα
− sinα cosα

)(
ρ1
ρ2

)
.

(
M2

S

)
ij
≡

(
A C
C B

)
= M2

A

(
s2
β −sβcβ

−sβcβ c2
β

)

+ v2
(

2λ1c2
β + Re(λ5)s2

β + 2Re(λ6)sβcβ λ34sβcβ + Re(λ6)c2
β + Re(λ7)s2

β

λ34sβcβ + Re(λ6)c2
β + Re(λ7)s2

β 2λ2s2
β + Re(λ5)c2

β + 2Re(λ7)sβcβ

)

with λ34 = λ3 + λ4 and tan 2α = 2C
A−B . [Pilaftsis, Wagner ’99]

The SM Higgs boson is given by

HSM = ρ1 cosβ + ρ2 sinβ = H cos(β − α) + h sin(β − α) .

With respect to the SM Higgs couplings HSMVV (V = W±,Z ),

ghVV = sin(β − α) , gHVV = cos(β − α) .

Unitarity constraints uniquely fix other V -Higgs-Higgs couplings [Gunion, Haber, Kane, Dawson ’90]

ghaZ =
g

2 cos θw
cos(β − α) , gHaZ =

g
2 cos θw

sin(β − α) ,

gh+hW− =
g
2

cos(β − α) , gh+HW− =
g
2

sin(β − α) .



Quark Yukawa Couplings

−Lq
Y = Q̄L(hu

1φ1 + hu
2φ2)uR + Q̄L(hd

1 φ̃1 + hd
2 φ̃2)dR

=
(
ūL , d̄L

) (
φ1 , φ2 , φ̃1 , φ̃2

)
hu

1 0
hu

2 0
0 hd

1
0 hd

2

( uR
dR

)
.

Introduced a non-square Yukawa coupling matrix H.
The three independent realizations of the custodial symmetry can be identified as those
satisfying [Ua

C ,H] = 04×2, where the Sp(4) generators in Φ-space are given by
K a = Ua

C ⊗ σ0. [PSBD, Pilaftsis ’14]

By convention, choose hu
1 = 0. For Type-I (Type-II) 2HDM, hd

1 (hd
2 ) = 0.

Quark yukawa couplings w.r.t. the SM are given by
Coupling Type-I Type-II

ght t̄ cosα/ sinβ cosα/ sinβ
ghbb̄ cosα/ sinβ − sinα/ cosβ
gHtt̄ sinα/ sinβ sinα/ sinβ
gHbb̄ sinα/ sinβ cosα/ cosβ
gat t̄ cotβ cotβ
gabb̄ − cotβ tanβ



Quark Yukawa Couplings

−Lq
Y = Q̄L(hu

1φ1 + hu
2φ2)uR + Q̄L(hd

1 φ̃1 + hd
2 φ̃2)dR

=
(
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Maximally Symmetric 2HDM

In the SO(5)-symmetric limit, λ2 = λ1, λ3 = 2λ1, λ4 = λ5 = λ6 = λ7 = 0.

A single quartic coupling λ:

V = −µ2(|φ1|2 + |φ2|2) + λ(|φ1|2 + |φ2|2)2.

Four Goldstone bosons (h, a, h±), while M2
H = 2λ2v2 and α = β.

Natural alignment limit.

Custodial symmetry broken by g′ and Yukawa couplings, as in the SM.

SO(5)
g′ 6=0−→ O(3)⊗ O(2)

yt 6=yb−→ O(2)⊗ O(2)

Not enough for a Higgs spectrum satisfying the experimental constraints.

Must include soft breaking by Re(m2
12) 6= 0.
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g′ Effect
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Yukawa Coupling Effects
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Soft Breaking Effects

In the SO(5) limit for quartic couplings, but with Re(m2
12) 6= 0,

M2
S = M2

a

(
s2
β −sβcβ

−sβcβ c2
β

)
+ 2λ2v2

(
c2
β sβcβ

sβcβ s2
β

)

=

(
cβ −sβ
sβ cβ

)(
2λ2v2 0

0 M2
a

)(
cβ sβ
−sβ cβ

)
≡ OM̂2

SOT .

M2
H = 2λ2v2 , and M2

h = M2
a = M2

h± =
Re(m2

12)

sβcβ

For Re(m2
12)� v2, obtain decoupling limit.

For the general case,

M̂2
S =

(
2v2(λ1c4

β + λ34s2
βc2

β + λ2s4
β ) v2sβcβ [s2

β (2λ2 − λ34)− c2
β (2λ1 − λ34)]

v2sβcβ [s2
β (2λ2 − λ34)− c2

β (2λ1 − λ34)] M2
a + 2v2s2

βc2
β (λ1 + λ2 − λ34)

)

Identify λSM = 2(λ1c4
β + λ34s2

βc2
β + λ2s4

β).

Alignment obtained for tan2 β =
2λ1−λ34
2λ2−λ34

, independent of Ma.
(similar to [Gunion, Haber ’03; Carena, Low, Shah, Wagner ’13])



Theoretical and Experimental Constraints

Stability of the potential: [Branco et al ’12]

λ1,2 > 0, λ3 +
√
λ1λ2 > 0, λ3 + λ4 +

√
λ1λ2 − Re(λ5) > 0.

Perturbativity of the Higgs self-couplings: ‖Sφφ→φφ‖ < 1
8 .

Electroweak precision observables.
LHC signal strengths of the light CP-even Higgs boson.
Limits on heavy CP-even scalar from H → WW ,ZZ , ττ searches.
Flavor observables such as Bs mixing and B → Xsγ.
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With SO(5) Boundary Conditions at µX
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Constraints on Higgs Sector
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Constraints on tan β
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Implications for LHC
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Figure 8. Cross section times branching ratio � · Br(H ! X) to available final states in units of pb

for 8 TeV pp collisions for the non-SM-like scalar Higgs boson, shown as a function of mH . Upper left:

tan� = 1, cos(��↵) = �0.32 for Type 1 2HDM. Upper right: tan� = 1, cos(��↵) = �0.11 for Type

2 2HDM. Lower left: tan� = 10, cos(� � ↵) = �0.43 for Type 1 2HDM. Lower right: tan� = 10,

cos(� � ↵) = �0.02 for Type 2 2HDM. In each case we have chosen �5,6,7 = 0 and mA = mH .

large tan�.

Of course, the dominant modes in the branching ratios of H and A are not necessarily

the best modes for discovery. In general the most fruitful standard channels (i.e., involving

direct decays to SM final states) are those that may be distinguished above SM backgrounds,

primarily:

• Inclusive production of H with H ! V V (⇤) or H ! ��

• Inclusive production of A with A ! ��

• Inclusive production of H or A with H, A ! ⌧+⌧� or H, A ! µ+µ�

• tt̄ production with t ! H±b̄ and H± ! ⌧±⌫

Beyond standard channels, it is useful to search for additional scalars through their decays

to h and other states. Again assuming the approximate mass ordering mh < mA ⇠ mH ⇠
mH± , the kinematically available channels with promising search prospects are:

– 25 –
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for 8 TeV pp collisions for the non-SM-like scalar Higgs boson, shown as a function of mH . Upper left:

tan� = 1, cos(��↵) = �0.32 for Type 1 2HDM. Upper right: tan� = 1, cos(��↵) = �0.11 for Type

2 2HDM. Lower left: tan� = 10, cos(� � ↵) = �0.43 for Type 1 2HDM. Lower right: tan� = 10,

cos(� � ↵) = �0.02 for Type 2 2HDM. In each case we have chosen �5,6,7 = 0 and mA = mH .

large tan�.

Of course, the dominant modes in the branching ratios of H and A are not necessarily

the best modes for discovery. In general the most fruitful standard channels (i.e., involving

direct decays to SM final states) are those that may be distinguished above SM backgrounds,

primarily:

• Inclusive production of H with H ! V V (⇤) or H ! ��

• Inclusive production of A with A ! ��

• Inclusive production of H or A with H, A ! ⌧+⌧� or H, A ! µ+µ�

• tt̄ production with t ! H±b̄ and H± ! ⌧±⌫

Beyond standard channels, it is useful to search for additional scalars through their decays

to h and other states. Again assuming the approximate mass ordering mh < mA ⇠ mH ⇠
mH± , the kinematically available channels with promising search prospects are:

– 25 –

[Craig, Galloway, Thomas ’13]



Implications for LHC

Promising Channels: Heavy Higgs→ 2 Light Higgs, t t̄ (low tanβ), bb̄, τ τ̄ (moderate-high
tanβ).
For t t̄ mode, gluon fusion process not helpful (large background).
t t̄h production mode, with h→ t t̄ gives a unique t t̄ t t̄ signal, with one Mt t̄ around mh.
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[PSBD, Pilaftsis (preliminary)]



Conclusion

2HDM potential in the bilinear scalar field formalism.

One-to-one correspondence between Φ-space and R-space.

Maximal symmetric group is SO(5).

Alignment limit can be realized naturally, independent of other model parameters.

Definite predictions for Higgs spectra.

Interesting consequences at colliders.

THANK YOU.
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