Higgs Spectra from Maximally Symmetric Two Higgs Doublet Model Potential

P. S. Bhupal Dev

Consortium for Fundamental Physics, The University of Manchester, United Kingdom

PSBD and A. Pilaftsis, arXiv:1407.xxxx.

The University of Manchester

Outline

- Introduction
- Symmetry classifications of the 2HDM Potential
- Spectrum Analysis for the Maximally Symmetric Potential
- Some Collider Phenomenology
- Conclusion

Introduction

- Discovery of a Higgs boson with $m_H = 125 \pm 2$ GeV and couplings within O(10%) of the SM predictions.
- Opportunity in the search of (or constraining) BSM physics through Higgs portal.
 - Precision Higgs Study (Higgcision).
 - Search for additional Higgses.

Two Higgs Doublet Model

- Several theoretical reasons to go beyond the SM Higgs sector.
- Any scalar sector in a local SU(2) × U(1) gauge theory must be consistent with ρ_{exp} ≃ 1.
- With *n* Higgs multiplets, $\rho_{\text{tree}} = \frac{\sum_{i=1}^{n} [T_i(T_i+1)-Y_i^2]v_i}{2\sum_{i=1}^{n} Y_i^2 v_i}$.
- Simplest choice: Add multiplets with $T(T + 1) = 3Y^2$.
- SM: One $SU(2)_L$ doublet ϕ with $Y = \pm \frac{1}{2}$.

• 2HDM: Two
$$SU(2)_L$$
 doublets $\phi_i = \begin{pmatrix} \phi_i^+ \\ \phi_i^0 \end{pmatrix}$ (with $i = 1, 2$).

General 2HDM potential:

$$\begin{split} V(\phi_1, \phi_2) &= -\mu_1^2(\phi_1^{\dagger}\phi_1) - \mu_2^2(\phi_2^{\dagger}\phi_2) - \left[m_{12}^2(\phi_1^{\dagger}\phi_2) + \text{H.c.}\right] \\ &+ \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2 + \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1) \\ &+ \left[\frac{1}{2}\lambda_5(\phi_1^{\dagger}\phi_2)^2 + \lambda_6(\phi_1^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2) + \lambda_7(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \text{H.c.}\right]. \end{split}$$

- Four real mass parameters $\mu_{1,2}^2$, Re (m_{12}^2) , Im (m_{12}^2) , and 10 real quartic couplings $\lambda_{1,2,3,4}$, Re $(\lambda_{5,6,7})$, Im $(\lambda_{5,6,7})$.
- Explore possible symmetries relating the quartic couplings.

Two Higgs Doublet Model

- Several theoretical reasons to go beyond the SM Higgs sector.
- Any scalar sector in a local SU(2) × U(1) gauge theory must be consistent with ρ_{exp} ≃ 1.
- With *n* Higgs multiplets, $\rho_{\text{tree}} = \frac{\sum_{i=1}^{n} [T_i(T_i+1) Y_i^2] v_i}{2 \sum_{i=1}^{n} Y_i^2 v_i}$.
- Simplest choice: Add multiplets with $T(T + 1) = 3Y^2$.
- SM: One $SU(2)_L$ doublet ϕ with $Y = \pm \frac{1}{2}$.
- 2HDM: Two $SU(2)_{L}$ doublets $\phi_{i} = \begin{pmatrix} \phi_{i}^{+} \\ \phi_{i}^{0} \end{pmatrix}$ (with i = 1, 2).
- General 2HDM potential:

$$\begin{split} V(\phi_1,\phi_2) &= -\mu_1^2(\phi_1^{\dagger}\phi_1) - \mu_2^2(\phi_2^{\dagger}\phi_2) - \left[m_{12}^2(\phi_1^{\dagger}\phi_2) + \text{H.c.}\right] \\ &+ \lambda_1(\phi_1^{\dagger}\phi_1)^2 + \lambda_2(\phi_2^{\dagger}\phi_2)^2 + \lambda_3(\phi_1^{\dagger}\phi_1)(\phi_2^{\dagger}\phi_2) + \lambda_4(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_1) \\ &+ \left[\frac{1}{2}\lambda_5(\phi_1^{\dagger}\phi_2)^2 + \lambda_6(\phi_1^{\dagger}\phi_1)(\phi_1^{\dagger}\phi_2) + \lambda_7(\phi_1^{\dagger}\phi_2)(\phi_2^{\dagger}\phi_2) + \text{H.c.}\right]. \end{split}$$

- Four real mass parameters $\mu_{1,2}^2$, Re (m_{12}^2) , Im (m_{12}^2) , and 10 real quartic couplings $\lambda_{1,2,3,4}$, Re $(\lambda_{5,6,7})$, Im $(\lambda_{5,6,7})$.
- Explore possible symmetries relating the quartic couplings.

An Alternative Formulation of the 2HDM Potential

Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis '11; Nishi '11]

$$\Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ i\sigma^2 \phi_1^* \\ i\sigma^2 \phi_2^* \end{pmatrix}$$

Convenient to go over to a 6-dimensional bilinear field space [Pilaftsis '12]

$$R^{A} = \Phi^{\dagger} \Sigma^{A} \Phi$$
 (A = 0, 1, 2, 3, 4, 5),

where the 8 × 8 matrices Σ^A can be expressed in terms of the Pauli matrices $\sigma^{1,2,3}$ and $\sigma^0 = \mathbf{1}_2$:

$$\begin{split} \Sigma^0 &= \frac{1}{2} \sigma^0 \otimes \sigma^0 \otimes \sigma^0 \equiv \frac{1}{2} \mathbf{1}_8, \quad \Sigma^1 &= \frac{1}{2} \sigma^0 \otimes \sigma^1 \otimes \sigma^0, \qquad \Sigma^2 = \frac{1}{2} \sigma^3 \otimes \sigma^2 \otimes \sigma^0, \\ \Sigma^3 &= \frac{1}{2} \sigma^0 \otimes \sigma^3 \otimes \sigma^0, \qquad \Sigma^4 = -\frac{1}{2} \sigma^2 \otimes \sigma^2 \otimes \sigma^0, \quad \Sigma^5 = -\frac{1}{2} \sigma^1 \otimes \sigma^2 \otimes \sigma^0. \end{split}$$

Realizes an SO(1,5) symmetry group.

An Alternative Formulation of the 2HDM Potential

$$V = -\frac{1}{2}M_AR^A + \frac{1}{4}R_AL_B^AR^B,$$

where

$$\begin{split} M_A &= \left(\mu_1^2 + \mu_2^2, \ 2 \mathrm{Re}(m_{12}^2), \ -2 \mathrm{Im}(m_{12}^2), \ \mu_1^2 - \mu_2^2, \ 0, \ 0\right), \\ R^A &= \left(\begin{array}{cc} \phi_1^{\dagger} \phi_1 + \phi_2^{\dagger} \phi_2 \\ \phi_1^{\dagger} \phi_2 + \phi_2^{\dagger} \phi_1 \\ -i(\phi_1^{\dagger} \phi_2 - \phi_2^{\dagger} \phi_1) \\ \phi_1^{\dagger} \phi_1 - \phi_2^{\dagger} \phi_2 \\ \phi_1^{\top} i \sigma^2 \phi_2 - \phi_2^{\dagger} i \sigma^2 \phi_1^* \\ -i(\phi_1^{\top} i \sigma^2 \phi_2 + \phi_2^{\dagger} i \sigma^2 \phi_1^*) \end{array}\right), \\ L_B^A &= \left(\begin{array}{ccc} \lambda_1 + \lambda_2 + \lambda_3 & \mathrm{Re}(\lambda_6 + \lambda_7) & -\mathrm{Im}(\lambda_6 + \lambda_7) & \lambda_1 - \lambda_2 & 0 & 0 \\ \mathrm{Re}(\lambda_6 + \lambda_7) & \lambda_4 + \mathrm{Re}(\lambda_5) & -\mathrm{Im}(\lambda_5) & \mathrm{Re}(\lambda_6 - \lambda_7) & 0 & 0 \\ -\mathrm{Im}(\lambda_6 + \lambda_7) & -\mathrm{Im}(\lambda_5) & \lambda_4 - \mathrm{Re}(\lambda_5) & -\mathrm{Im}(\lambda_6 - \lambda_7) & 0 & 0 \\ \lambda_1 - \lambda_2 & \mathrm{Re}(\lambda_6 - \lambda_7) & -\mathrm{Im}(\lambda_6 - \lambda_7) & \lambda_1 + \lambda_2 - \lambda_3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right) \end{split}$$

Symmetry Classifications of the 2HDM Potential

Three classes of accidental symmetries of the 2HDM potential:

- Higgs Family (HF) Symmetries involving transformations of \$\phi_{1,2}\$ only (but not \$\phi_{1,2}^*\$), e.g. \$Z_2\$ [Glashow, Weinberg '58], \$U(1)_{PQ}\$ [Peccei, Quinn '77], \$SU(2)_{HF}\$ [Deshpande, Ma '78].
- *CP* Symmetries relating $\phi_{1,2}$ to $\phi_{1,2}^*$, e.g. $\phi_{1(2)} \rightarrow \phi_{1(2)}^*$ (CP1) [Lee '73], $\phi_{1(2)} \rightarrow (-)\phi_{2(1)}^*$ (CP2) [Davidson, Haber '05], CP1 combined with $SO(2)_{\rm HF}$ (CP3) [Ivanov '08; Ferreira, Haber, Silva '09].
- Mixed HF and *CP* transformations that leave the gauge-kinetic terms of $\phi_{1,2}$ invariant [Battye, Brawn, Pilaftsis '11], e.g. O(8) and $O(4) \otimes O(4)$ in real field space [Deshpande, Ma '78].
- Maximum of 13 distinct accidental symmetries. [Battye, Brawn, Pilaftsis '11]
- Can derive explicit transformation relations based on the bilinear scalar field formalism. [Pilaftsis '12]

Symmetry Classifications of the 2HDM Potential

Table 1

No.	Symmetry	μ_1^2	μ_2^2	m ² ₁₂	λ_1	λ2	λ3	λ4	Re λ_5	$\lambda_6 = \lambda_7$
1	$Z_2 \times O(2)$	-	-	Real	-	-	-	-	-	Real
2	$(Z_2)^2 \times SO(2)$	-	-	0	-	-	-	-	-	0
3	$(Z_2)^3 \times O(2)$	-	μ_{1}^{2}	0	-	λ_1	-	-	-	0
4	$0(2) \times 0(2)$	-	-	0	-	-	-	-	0	0
5	$Z_2 \times [0(2)]^2$	-	μ_{1}^{2}	0	-	λ_1	-	-	$2\lambda_1 - \lambda_{34}$	0
6	$0(3) \times 0(2)$	-	μ_1^2	0	-	λ_1	-	$2\lambda_1 - \lambda_3$	0	0
7	SO(3)	-	-	Real	-	-	-	-	λ4	Real
8	$Z_2 \times O(3)$	-	μ_{1}^{2}	Real	-	λ1	-	-	λ_4	Real
9	$(Z_2)^2 \times SO(3)$	-	μ_{1}^{2}	0	-	λ_1	-	-	$\pm\lambda_4$	0
10	$0(2) \times 0(3)$	-	μ_{1}^{2}	0	-	λ_1	$2\lambda_1$	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_2 \times O(4)$	-	μ_{1}^{2}	0	-	λ_1	-	0	0	0
13	SO(5)	-	μ_{1}^{2}	0	-	λ_1	$2\lambda_1$	0	0	0

Parameter relations for the 13 accidental symmetries [1] related to the $U(1)_{Y}$ -invariant 2HDM potential in the diagonally reduced basis, where Im $\lambda_5 = 0$ and $\lambda_6 = \lambda_7$. A dash signifies the absence of a constraint.

[Pilaftsis '12]

• SO(5) is the maximal symmetry group in the bilinear field space which leaves R⁰ invariant.

- In a specific bilinear basis [Gunion, Haber '05], where L_{IJ} is made diagonal by an $SO(3) \subset SO(5)$ rotation, $Im(\lambda_5) = 0$ and $\lambda_6 = \lambda_7$.
- 7 independent quartic couplings for the $U(1)_{Y}$ -invariant 2HDM potential.
- SO(5) is isomorphic to Sp(4)/Z₂, which gives a one-to-one correspondence between the generators of the maximal reparametrization groups G^R_{2HDM} = SO(5) and G^Φ_{2HDM} = Sp(4). [PSBD, Pilaftsis '14]

Symmetry Generators

Table 2

Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)₂-invariant 2HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T^0	D _{CP2}	-	0
4	$O(2) \times O(2)$	T^{3}, T^{0}	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	$O(3) \times O(2)$	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h, a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	$O(2) \times O(3)$	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

[Pilaftsis '12]

- T^a and K^a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).
- T^0 is the hypercharge generator in *R*-space, which is equivalent to the electromagnetic generator $Q_{\rm em} = \frac{1}{2}\sigma^0 \otimes \sigma^0 \otimes \sigma^3 + K^0$ in Φ -space.
- Sp(4) contains the custodial symmetry group $SU(2)_C$.
- Three *independent* realizations of custodial symmetry induced by
 (i) K^{0,4,6}, (ii) K^{0,5,7}, (iii) K^{0,8,9}.

Symmetry Generators

Table 2

Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the U(1)y-invariant 2HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D Z2	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$0(2) \times 0(2)$	T^{3}, T^{0}	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	0(3) × 0(2)	T ^{1,2,3} , T ⁰	-	T ^{1,2}	2 (h,a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	0(2) × 0(3)	T ³ , T ^{0,8,9}	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})
Piloffeis '12	1				and the second

- Pilattsis 12
 - T^a and K^a are the generators of SO(5) and Sp(4) respectively (a = 0, ..., 9).
 - T⁰ is the hypercharge generator in *R*-space, which is equivalent to the electromagnetic generator $Q_{\rm em} = \frac{1}{2}\sigma^0 \otimes \sigma^0 \otimes \sigma^3 + K^0$ in Φ -space.
 - Sp(4) contains the custodial symmetry group $SU(2)_C$.
 - Three independent realizations of custodial symmetry induced by (i) $K^{0,4,6}$. (ii) $K^{0,5,7}$. (iii) $K^{0,8,9}$.

Higgs Spectra

- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_1^2 + v_2^2} = v_{\text{SM}}$ and $\tan \beta = v_2/v_1$.
- Eight real scalar fields: $\phi_j = \begin{pmatrix} \phi_j^+ \\ \frac{1}{\sqrt{2}}(v_j + \rho_j + i\eta_j) \end{pmatrix}$ (with j = 1, 2).
- After EWSB, three Goldstone bosons (G[±], G⁰), which are eaten by W[±] and Z, and five physical scalar fields: two CP-even (h, H), one CP-odd (a) and two charged (h[±]).
- In the charged sector,

$$\begin{pmatrix} G^{\pm} \\ h^{\pm} \end{pmatrix} = \begin{pmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{pmatrix} \begin{pmatrix} \phi_1^{\pm} \\ \phi_2^{\pm} \end{pmatrix} .$$

with $M_{h^{\pm}}^2 = \frac{1}{s_\beta c_\beta} \left[\operatorname{Re}(m_{12}^2) - \frac{1}{2} \left(\{\lambda_4 + \operatorname{Re}(\lambda_5)\} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \right) \right].$

In the CP-odd sector,

$$\begin{pmatrix} G^{0} \\ a \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \eta_{1} \\ \eta_{2} \end{pmatrix} .$$

with $M_{a}^{2} = \frac{1}{s_{\beta}c_{\beta}} \left[\operatorname{Re}(m_{12}^{2}) - v^{2} \left(\operatorname{Re}(\lambda_{5})s_{\beta}c_{\beta} + \frac{1}{2} \left\{ \operatorname{Re}(\lambda_{6})c_{\beta}^{2} + \operatorname{Re}(\lambda_{7})s_{\beta}^{2} \right\} \right) \right]$
$$= M_{h^{\pm}}^{2} + \frac{1}{2} \left[\lambda_{4} - \operatorname{Re}(\lambda_{5}) \right] v^{2}.$$

Higgs Spectra

• In the CP-even sector,

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \rho_1 \\ \rho_2 \end{pmatrix} .$$

$$\begin{pmatrix} (M_S^2)_{ij} & \equiv \begin{pmatrix} A & C \\ C & B \end{pmatrix} = M_A^2 \begin{pmatrix} s_\beta^2 & -s_\beta c_\beta \\ -s_\beta c_\beta & c_\beta^2 \end{pmatrix}$$

$$+ v^2 \begin{pmatrix} 2\lambda_1 c_\beta^2 + \operatorname{Re}(\lambda_5) s_\beta^2 + 2\operatorname{Re}(\lambda_6) s_\beta c_\beta & \lambda_{34} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 \\ \lambda_{34} s_\beta c_\beta + \operatorname{Re}(\lambda_6) c_\beta^2 + \operatorname{Re}(\lambda_7) s_\beta^2 & 2\lambda_2 s_\beta^2 + \operatorname{Re}(\lambda_5) c_\beta^2 + 2\operatorname{Re}(\lambda_7) s_\beta c_\beta \end{pmatrix}$$

with $\lambda_{34} = \lambda_3 + \lambda_4$ and $\tan 2\alpha = \frac{2C}{A-B}$. [Pilaftsis, Wagner '99] • The SM Higgs boson is given by

 $H_{\rm SM} = \rho_1 \cos \beta + \rho_2 \sin \beta = H \cos(\beta - \alpha) + h \sin(\beta - \alpha) .$

• With respect to the SM Higgs couplings $H_{\rm SM}VV$ ($V = W^{\pm}, Z$),

 $g_{hVV} = \sin(\beta - \alpha)$, $g_{HVV} = \cos(\beta - \alpha)$.

Unitarity constraints uniquely fix other V-Higgs-Higgs couplings [Gunion, Haber, Kane, Dawson '90]

$$\begin{split} g_{haZ} &= \; \frac{g}{2\cos\theta_w}\cos(\beta-\alpha) \;, \qquad g_{HaZ} \;=\; \frac{g}{2\cos\theta_w}\sin(\beta-\alpha) \;, \\ g_{h^+hW^-} &=\; \frac{g}{2}\cos(\beta-\alpha) \;, \qquad g_{h^+HW^-} \;=\; \frac{g}{2}\sin(\beta-\alpha) \;. \end{split}$$

Quark Yukawa Couplings

$$\begin{aligned} -\mathcal{L}_{Y}^{q} &= \bar{Q}_{L}(h_{1}^{u}\phi_{1}+h_{2}^{u}\phi_{2})u_{R} + \bar{Q}_{L}(h_{1}^{d}\widetilde{\phi}_{1}+h_{2}^{d}\widetilde{\phi}_{2})d_{R} \\ &= (\bar{u}_{L}, \bar{d}_{L})\left(\phi_{1}, \phi_{2}, \widetilde{\phi}_{1}, \widetilde{\phi}_{2}\right)\begin{pmatrix}h_{1}^{u} & 0\\h_{2}^{u} & 0\\0 & h_{1}^{d}\\0 & h_{2}^{d}\end{pmatrix}\begin{pmatrix}u_{R}\\d_{R}\end{pmatrix} . \end{aligned}$$

- Introduced a non-square Yukawa coupling matrix H.
- The three independent realizations of the custodial symmetry can be identified as those satisfying $[\mathcal{U}_{C}^{a}, \mathcal{H}] = \mathbf{0}_{4\times 2}$, where the Sp(4) generators in Φ -space are given by $K^{a} = \mathcal{U}_{C}^{a} \otimes \sigma^{0}$. [PSBD, Pilaftsis '14]
- By convention, choose $h_1^u = 0$. For Type-I (Type-II) 2HDM, $h_1^d(h_2^d) = 0$.

Quark yukawa couplings w.r.t. the SM are given by

Coupling	Type-I	Type-II
$g_{hb\overline{b}}$		
$g_{Ht\bar{t}}$		
$g_{Hb\overline{b}}$		
g _{atī}	$\cot \beta$	$\cot \beta$
$g_{ab\overline{b}}$	$-\cot\beta$	$\tan \beta$

Quark Yukawa Couplings

$$\begin{aligned} -\mathcal{L}_{Y}^{q} &= \bar{Q}_{L}(h_{1}^{u}\phi_{1}+h_{2}^{u}\phi_{2})u_{R} + \bar{Q}_{L}(h_{1}^{d}\widetilde{\phi}_{1}+h_{2}^{d}\widetilde{\phi}_{2})d_{R} \\ &= (\bar{u}_{L}, \bar{d}_{L})\left(\phi_{1}, \phi_{2}, \widetilde{\phi}_{1}, \widetilde{\phi}_{2}\right)\begin{pmatrix}h_{1}^{u} & 0\\h_{2}^{u} & 0\\0 & h_{1}^{d}\\0 & h_{2}^{d}\end{pmatrix}\begin{pmatrix}u_{R}\\d_{R}\end{pmatrix} . \end{aligned}$$

- Introduced a non-square Yukawa coupling matrix H.
- The three independent realizations of the custodial symmetry can be identified as those satisfying $[\mathcal{U}_{C}^{a}, \mathcal{H}] = \mathbf{0}_{4\times 2}$, where the Sp(4) generators in Φ -space are given by $K^{a} = \mathcal{U}_{C}^{a} \otimes \sigma^{0}$. [PSBD, Pilaftsis '14]
- By convention, choose $h_1^u = 0$. For Type-I (Type-II) 2HDM, $h_1^d(h_2^d) = 0$.
- Quark yukawa couplings w.r.t. the SM are given by

Coupling	Type-I	Type-II	
$g_{ht\overline{t}}$	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$	
$g_{hbar{b}}$	$\cos lpha / \sin eta$	$-\sin lpha / \cos eta$	
$g_{Ht\overline{t}}$	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$	
$g_{Hbar{b}}$	$\sin lpha / \sin eta$	$\cos lpha / \cos eta$	
$g_{at\overline{t}}$	$\cot \beta$	cot β	
$g_{abar{b}}$	$-\cot\beta$	$\tan \beta$	

Maximally Symmetric 2HDM

• In the *SO*(5)-symmetric limit, $\lambda_2 = \lambda_1$, $\lambda_3 = 2\lambda_1$, $\lambda_4 = \lambda_5 = \lambda_6 = \lambda_7 = 0$.

A single quartic coupling λ:

$$V = -\mu^{2}(|\phi_{1}|^{2} + |\phi_{2}|^{2}) + \lambda(|\phi_{1}|^{2} + |\phi_{2}|^{2})^{2}.$$

- Four Goldstone bosons (h, a, h^{\pm}) , while $M_H^2 = 2\lambda_2 v^2$ and $\alpha = \beta$.
- Natural alignment limit.

Custodial symmetry broken by g' and Yukawa couplings, as in the SM.

 $SO(5) \stackrel{g' \neq 0}{\longrightarrow} O(3) \otimes O(2) \stackrel{y_t \neq y_b}{\longrightarrow} O(2) \otimes O(2)$

- Not enough for a Higgs spectrum satisfying the experimental constraints.
- Must include soft breaking by $\operatorname{Re}(m_{12}^2) \neq 0$.

Maximally Symmetric 2HDM

• In the *SO*(5)-symmetric limit, $\lambda_2 = \lambda_1$, $\lambda_3 = 2\lambda_1$, $\lambda_4 = \lambda_5 = \lambda_6 = \lambda_7 = 0$.

A single quartic coupling λ:

$$V = -\mu^{2}(|\phi_{1}|^{2} + |\phi_{2}|^{2}) + \lambda(|\phi_{1}|^{2} + |\phi_{2}|^{2})^{2}.$$

- Four Goldstone bosons (h, a, h^{\pm}) , while $M_H^2 = 2\lambda_2 v^2$ and $\alpha = \beta$.
- Natural alignment limit.

Custodial symmetry broken by g' and Yukawa couplings, as in the SM.

 $SO(5) \stackrel{g'
eq 0}{\longrightarrow} O(3) \otimes O(2) \stackrel{y_t
eq y_b}{\longrightarrow} O(2) \otimes O(2)$

- Not enough for a Higgs spectrum satisfying the experimental constraints.
- Must include soft breaking by $\operatorname{Re}(m_{12}^2) \neq 0$.

g' Effect

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D 22	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$O(2) \times O(2)$	T ³ , T ⁰	-	T ³	1 (a)
5	$Z_2 \times [0(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	0(3) × 0(2)	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h,a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	0(2) × 0(3)	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	$T^{0,1,2,,9}$	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

Yukawa Coupling Effects

No.	Symmetry	Generators $T^a \leftrightarrow K^a$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_2 \times O(2)$	T ⁰	D _{CP1}	-	0
2	$(Z_2)^2 \times SO(2)$	T ⁰	D _{Z2}	-	0
3	$(Z_2)^3 \times O(2)$	T ⁰	D _{CP2}	-	0
4	$O(2) \times O(2)$	T ³ , T ⁰	-	T ³	1 (a)
5	$Z_2 \times [O(2)]^2$	T^{2}, T^{0}	D _{CP1}	T ²	1 (h)
6	0(3) × 0(2)	$T^{1,2,3}, T^0$	-	T ^{1,2}	2 (h, a)
7	SO(3)	T ^{0,4,6}	-	T ^{4,6}	2 (h [±])
8	$Z_2 \times O(3)$	T ^{0,4,6}	$D_{Z_2} \cdot D_{CP2}$	T ^{4,6}	2 (h [±])
9	$(Z_2)^2 \times SO(3)$	T ^{0,5,7}	$D_{CP1} \cdot D_{CP2}$	T ^{5,7}	2 (h [±])
10	$0(2) \times 0(3)$	$T^3, T^{0,8,9}$	-	T ³	1 (a)
11	SO(4)	T ^{0,3,4,5,6,7}	-	T ^{3,5,7}	3 (a, h [±])
12	$Z_2 \times O(4)$	T ^{0,3,4,5,6,7}	$D_{Z_2} \cdot D_{CP2}$	T ^{3,5,7}	3 (a, h [±])
13	SO(5)	T ^{0,1,2,,9}	-	T ^{1,2,8,9}	4 (h, a, h^{\pm})

Soft Breaking Effects

• In the SO(5) limit for quartic couplings, but with $\operatorname{Re}(m_{12}^2) \neq 0$,

$$\begin{aligned} \mathsf{M}_{\mathcal{S}}^2 &= \mathsf{M}_{a}^2 \left(\begin{array}{cc} s_{\beta}^2 & -s_{\beta} c_{\beta} \\ -s_{\beta} c_{\beta} & c_{\beta}^2 \end{array} \right) + 2\lambda_2 v^2 \left(\begin{array}{cc} c_{\beta}^2 & s_{\beta} c_{\beta} \\ s_{\beta} c_{\beta} & s_{\beta}^2 \end{array} \right) \\ &= \left(\begin{array}{cc} c_{\beta} & -s_{\beta} \\ s_{\beta} & c_{\beta} \end{array} \right) \left(\begin{array}{cc} 2\lambda_2 v^2 & 0 \\ 0 & \mathsf{M}_{a}^2 \end{array} \right) \left(\begin{array}{cc} c_{\beta} & s_{\beta} \\ -s_{\beta} & c_{\beta} \end{array} \right) \equiv O \widehat{\mathsf{M}}_{\mathcal{S}}^2 O^{\mathsf{T}} \end{aligned}$$

$$M_{H}^2 = 2\lambda_2 v^2$$
, and $M_{h}^2 = M_a^2 = M_{h^{\pm}}^2 = rac{\operatorname{Re}(m_{12}^2)}{s_{\beta}c_{\beta}}$

• For $\operatorname{Re}(m_{12}^2) \gg v^2$, obtain decoupling limit.

For the general case,

Í

$$\widetilde{\mathcal{M}}_{S}^{2} = \begin{pmatrix} 2v^{2}(\lambda_{1}c_{\beta}^{4} + \lambda_{34}s_{\beta}^{2}c_{\beta}^{2} + \lambda_{2}s_{\beta}^{4}) & v^{2}s_{\beta}c_{\beta}[s_{\beta}^{2}(2\lambda_{2} - \lambda_{34}) - c_{\beta}^{2}(2\lambda_{1} - \lambda_{34})] \\ v^{2}s_{\beta}c_{\beta}[s_{\beta}^{2}(2\lambda_{2} - \lambda_{34}) - c_{\beta}^{2}(2\lambda_{1} - \lambda_{34})] & M_{a}^{2} + 2v^{2}s_{\beta}^{2}c_{\beta}^{2}(\lambda_{1} + \lambda_{2} - \lambda_{34}) \end{pmatrix}$$

• Identify
$$\lambda_{\text{SM}} = 2(\lambda_1 c_{\beta}^4 + \lambda_{34} s_{\beta}^2 c_{\beta}^2 + \lambda_2 s_{\beta}^4).$$

• Alignment obtained for $\tan^2 \beta = \frac{2\lambda_1 - \lambda_{34}}{2\lambda_2 - \lambda_{34}}$, independent of M_a . (similar to [Gunion, Haber '03; Carena, Low, Shah, Wagner '13])

Theoretical and Experimental Constraints

Stability of the potential: [Branco et al '12]

 $\lambda_{1,2} > 0, \quad \lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0, \quad \lambda_3 + \lambda_4 + \sqrt{\lambda_1 \lambda_2} - \operatorname{Re}(\lambda_5) > 0.$

Perturbativity of the Higgs self-couplings: ||S_{φφ→φφ}|| < ¹/₈.

- Electroweak precision observables.
- LHC signal strengths of the light CP-even Higgs boson.
- Limits on heavy *CP*-even scalar from $H \rightarrow WW, ZZ, \tau\tau$ searches.
- Flavor observables such as B_s mixing and $B \rightarrow X_s \gamma$.

With SO(5) Boundary Conditions at μ_X

With SO(5) Boundary Conditions at μ_X

With SO(5) Boundary Conditions at μ_X

Constraints on Higgs Sector

[PSBD, Pilaftsis (preliminary)]

Constraints on $\tan\beta$

Implications for LHC

Higgs production processes:

[Craig, Galloway, Thomas '13]

Implications for LHC

- Promising Channels: Heavy Higgs \rightarrow 2 Light Higgs, $t\bar{t}$ (low tan β), $b\bar{b}$, $\tau\bar{\tau}$ (moderate-high tan β).
- For *tt* mode, gluon fusion process not helpful (large background).
- $t\bar{t}h$ production mode, with $h \rightarrow t\bar{t}$ gives a unique $t\bar{t}t\bar{t}$ signal, with one $M_{t\bar{t}}$ around m_h .

[PSBD, Pilaftsis (preliminary)]

Conclusion

- 2HDM potential in the bilinear scalar field formalism.
- One-to-one correspondence between Φ-space and R-space.
- Maximal symmetric group is *SO*(5).
- Alignment limit can be realized naturally, *independent* of other model parameters.
- Definite predictions for Higgs spectra.
- Interesting consequences at colliders.

THANK YOU.

Conclusion

- 2HDM potential in the bilinear scalar field formalism.
- One-to-one correspondence between Φ-space and *R*-space.
- Maximal symmetric group is *SO*(5).
- Alignment limit can be realized naturally, *independent* of other model parameters.
- Definite predictions for Higgs spectra.
- Interesting consequences at colliders.

THANK YOU.