Higgs Spectra from Maximally Symmetric Two Higgs Doublet Model Potential

P. S. Bhupal Dev

Consortium for Fundamental Physics, The University of Manchester, United Kingdom

PSBD and A. Pilaftsis, arXiv:1407.xxxx.

Outline

- Introduction
- Symmetry classifications of the 2HDM Potential
- Spectrum Analysis for the Maximally Symmetric Potential
- Some Collider Phenomenology
- Conclusion

Introduction

- Discovery of a Higgs boson with $m_{H}=125 \pm 2 \mathrm{GeV}$ and couplings within $\mathcal{O}(10 \%)$ of the SM predictions.
- Opportunity in the search of (or constraining) BSM physics through Higgs portal.
- Precision Higgs Study (Higgcision).
- Search for additional Higgses.

Two Higgs Doublet Model

- Several theoretical reasons to go beyond the SM Higgs sector.
- Any scalar sector in a local $S U(2) \times U(1)$ gauge theory must be consistent with $\rho_{\exp } \simeq 1$.
- With n Higgs multiplets, $\rho_{\text {tree }}=\frac{\sum_{i=1}^{n}\left[T_{i}\left(T_{i}+1\right)-Y_{i}^{2}\right] v_{i}}{2 \sum_{i=1}^{n} Y_{i}^{2} v_{i}}$.
- Simplest choice: Add multiplets with $T(T+1)=3 Y^{2}$.
- SM: One $S U(2)_{L}$ doublet ϕ with $Y= \pm \frac{1}{2}$.
- 2HDM: Two $S U(2)_{L}$ doublets $\phi_{i}=\binom{\phi_{i}^{+}}{\phi_{i}^{0}} \quad$ (with $i=1,2$).
- General 2HDM potential:

- Four real mass parameters $\mu_{1,2}^{2}, \operatorname{Re}\left(m_{12}^{2}\right), \operatorname{Im}\left(m_{12}^{2}\right)$, and 10 real quartic couplings $\lambda_{1,2,3,4}$, $\operatorname{Re}\left(\lambda_{5,6,7}\right), \operatorname{Im}\left(\lambda_{5,6,7}\right)$.
- Explore possible symmetries relating the quartic couplings.

Two Higgs Doublet Model

- Several theoretical reasons to go beyond the SM Higgs sector.
- Any scalar sector in a local $S U(2) \times U(1)$ gauge theory must be consistent with $\rho_{\exp } \simeq 1$.
- With n Higgs multiplets, $\rho_{\text {tree }}=\frac{\sum_{i=1}^{n}\left[T_{i}\left(T_{i}+1\right)-Y_{i}^{2}\right] v_{i}}{2 \sum_{i=1}^{n} Y_{i}^{2} v_{i}}$.
- Simplest choice: Add multiplets with $T(T+1)=3 Y^{2}$.
- SM: One $S U(2)_{L}$ doublet ϕ with $Y= \pm \frac{1}{2}$.
- 2HDM: Two $S U(2)_{L}$ doublets $\phi_{i}=\binom{\phi_{i}^{+}}{\phi_{i}^{0}} \quad$ (with $i=1,2$).
- General 2HDM potential:

$$
\begin{aligned}
V\left(\phi_{1}, \phi_{2}\right)= & -\mu_{1}^{2}\left(\phi_{1}^{\dagger} \phi_{1}\right)-\mu_{2}^{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)-\left[m_{12}^{2}\left(\phi_{1}^{\dagger} \phi_{2}\right)+\text { H.c. }\right] \\
& +\lambda_{1}\left(\phi_{1}^{\dagger} \phi_{1}\right)^{2}+\lambda_{2}\left(\phi_{2}^{\dagger} \phi_{2}\right)^{2}+\lambda_{3}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\lambda_{4}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{1}\right) \\
& +\left[\frac{1}{2} \lambda_{5}\left(\phi_{1}^{\dagger} \phi_{2}\right)^{2}+\lambda_{6}\left(\phi_{1}^{\dagger} \phi_{1}\right)\left(\phi_{1}^{\dagger} \phi_{2}\right)+\lambda_{7}\left(\phi_{1}^{\dagger} \phi_{2}\right)\left(\phi_{2}^{\dagger} \phi_{2}\right)+\text { H.c. }\right] .
\end{aligned}
$$

- Four real mass parameters $\mu_{1,2}^{2}, \operatorname{Re}\left(m_{12}^{2}\right), \operatorname{Im}\left(m_{12}^{2}\right)$, and 10 real quartic couplings $\lambda_{1,2,3,4}$, $\operatorname{Re}\left(\lambda_{5,6,7}\right), \operatorname{Im}\left(\lambda_{5,6,7}\right)$.
- Explore possible symmetries relating the quartic couplings.

An Alternative Formulation of the 2HDM Potential

- Introduce an 8-dimensional complex multiplet: [Battye, Brawn, Pilaftsis '11; Nishi '11]

$$
\Phi=\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
i \sigma^{2} \phi_{1}^{*} \\
i \sigma^{2} \phi_{2}^{*}
\end{array}\right) .
$$

- Convenient to go over to a 6-dimensional bilinear field space [Pilaftsis '12]

$$
R^{A}=\Phi^{\dagger} \Sigma^{A} \Phi \quad(A=0,1,2,3,4,5)
$$

where the 8×8 matrices Σ^{A} can be expressed in terms of the Pauli matrices $\sigma^{1,2,3}$ and $\sigma^{0}=\mathbf{1}_{2}$:

$$
\begin{array}{lll}
\Sigma^{0}=\frac{1}{2} \sigma^{0} \otimes \sigma^{0} \otimes \sigma^{0} \equiv \frac{1}{2} \mathbf{1}_{8}, & \Sigma^{1}=\frac{1}{2} \sigma^{0} \otimes \sigma^{1} \otimes \sigma^{0}, & \Sigma^{2}=\frac{1}{2} \sigma^{3} \otimes \sigma^{2} \otimes \sigma^{0}, \\
\Sigma^{3}=\frac{1}{2} \sigma^{0} \otimes \sigma^{3} \otimes \sigma^{0}, & \Sigma^{4}=-\frac{1}{2} \sigma^{2} \otimes \sigma^{2} \otimes \sigma^{0}, & \Sigma^{5}=-\frac{1}{2} \sigma^{1} \otimes \sigma^{2} \otimes \sigma^{0} .
\end{array}
$$

- Realizes an $S O(1,5)$ symmetry group.

An Alternative Formulation of the 2HDM Potential

$$
V=-\frac{1}{2} M_{A} R^{A}+\frac{1}{4} R_{A} L_{B}^{A} R^{B},
$$

where

$$
\begin{array}{rl}
M_{A} & =\left(\begin{array}{cllll}
\mu_{1}^{2}+\mu_{2}^{2}, \quad 2 \operatorname{Re}\left(m_{12}^{2}\right), & -2 \operatorname{Im}\left(m_{12}^{2}\right), \quad \mu_{1}^{2}-\mu_{2}^{2}, & 0, & 0
\end{array}\right), \\
R^{A} & =\left(\begin{array}{c}
\phi_{1}^{\dagger} \phi_{1}+\phi_{2}^{\dagger} \phi_{2} \\
\phi_{1}^{\dagger} \phi_{2}+\phi_{2}^{\dagger} \phi_{1} \\
-i\left(\phi_{1}^{\dagger} \phi_{2}-\phi_{2}^{\dagger} \phi_{1}\right) \\
\phi_{1}^{\dagger} \phi_{1}-\phi_{2}^{\dagger} \phi_{2} \\
\phi_{1}^{\top} i \sigma^{2} \phi_{2}-\phi_{2}^{\dagger} i \sigma^{2} \phi_{1}^{*} \\
-i\left(\phi_{1}^{\top} \sigma^{2} \phi_{2}+\phi_{2}^{\dagger} i \sigma^{2} \phi_{1}^{*}\right)
\end{array}\right), \\
L_{B}^{A} & =\left(\begin{array}{ccccc}
\lambda_{1}+\lambda_{2}+\lambda_{3} & \operatorname{Re}\left(\lambda_{6}+\lambda_{7}\right) & -\operatorname{Im}\left(\lambda_{6}+\lambda_{7}\right) & \lambda_{1}-\lambda_{2} & 0 \\
\operatorname{Re}\left(\lambda_{6}+\lambda_{7}\right) & \lambda_{4}+\operatorname{Re}\left(\lambda_{5}\right) & -\operatorname{Im}\left(\lambda_{5}\right) & \operatorname{Re}\left(\lambda_{6}-\lambda_{7}\right) & 0 \\
0 \\
-\operatorname{Im}\left(\lambda_{6}+\lambda_{7}\right) & -\operatorname{Im}\left(\lambda_{5}\right) & \lambda_{4}-\operatorname{Re}\left(\lambda_{5}\right) & -\operatorname{Im}\left(\lambda_{6}-\lambda_{7}\right) & 0 \\
0 \\
\lambda_{1}-\lambda_{2} & \operatorname{Re}\left(\lambda_{6}-\lambda_{7}\right) & -\operatorname{Im}\left(\lambda_{6}-\lambda_{7}\right) & \lambda_{1}+\lambda_{2}-\lambda_{3} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
0 & 0
\end{array}
$$

Symmetry Classifications of the 2HDM Potential

- Three classes of accidental symmetries of the 2HDM potential:
- Higgs Family (HF) Symmetries involving transformations of $\phi_{1,2}$ only (but not $\phi_{1,2}^{*}$), e.g. Z_{2} [Glashow, Weinberg '58], $U(1)_{\mathrm{PQ}}$ [Peccei, Quinn '77], $S U(2)_{\mathrm{HF}}$ [Deshpande, Ma '78].
- $C P$ Symmetries relating $\phi_{1,2}$ to $\phi_{1,2}^{*}$, e.g. $\phi_{1(2)} \rightarrow \phi_{1(2)}^{*}$ (CP1) [Lee '73], $\phi_{1(2)} \rightarrow(-) \phi_{2(1)}^{*}$ (CP2) [Davidson, Haber '05], CP1 combined with SO(2) $)_{\mathrm{HF}}$ (CP3) [lvanov '08; Ferreira, Haber, Silva '09].
- Mixed HF and CP transformations that leave the gauge-kinetic terms of $\phi_{1,2}$ invariant [Battye, Brawn, Pilaftsis '11], e.g. $O(8)$ and $O(4) \otimes O(4)$ in real field space [Deshpande, Ma '78].
- Maximum of 13 distinct accidental symmetries. [Battye, Brawn, Pilaftsis '11]
- Can derive explicit transformation relations based on the bilinear scalar field formalism.
[Pilaftsis '12]

Symmetry Classifications of the 2HDM Potential

Table 1

Parameter relations for the 13 accidental symmetries [1] related to the $\mathrm{U}(1)_{Y}$-invariant 2 HDM potential in the diagonally reduced basis, where $\operatorname{Im} \lambda_{5}=0$ and $\lambda_{6}=\lambda_{7}$. A dash signifies the absence of a constraint.

No.	Symmetry	μ_{1}^{2}	μ_{2}^{2}	m_{12}^{2}	λ_{1}	λ_{2}	λ_{3}	λ_{4}	$\operatorname{Re} \lambda_{5}$	$\lambda_{6}=\lambda_{7}$
1	$Z_{2} \times \mathrm{O}(2)$	-	-	Real	-	-	-	-	-	Real
2	$\left(Z_{2}\right)^{2} \times \mathrm{SO}(2)$	-	-	0	-	-	-	-	-	0
3	$\left(Z_{2}\right)^{3} \times \mathrm{O}(2)$	-	μ_{1}^{2}	0	-	λ_{1}	-	-	-	0
4	$\mathrm{O}(2) \times \mathrm{O}(2)$	-	-	0	-	-	-	-	0	0
5	$Z_{2} \times[\mathrm{O}(2)]^{2}$	-	μ_{1}^{2}	0	-	λ_{1}	-	-	$2 \lambda_{1}-\lambda_{34}$	0
6	$\mathrm{O}(3) \times \mathrm{O}(2)$	-	μ_{1}^{2}	0	-	λ_{1}	-	$2 \lambda_{1}-\lambda_{3}$	0	0
7	$\mathrm{SO}(3)$	-	-	Real	-	-	-	-	λ_{4}	Real
8	$Z_{2} \times \mathrm{O}(3)$	-	μ_{1}^{2}	Real	-	λ_{1}	-	-	λ_{4}	Real
9	$\left(Z_{2}\right)^{2} \times \mathrm{SO}(3)$	-	μ_{1}^{2}	0	-	λ_{1}	-	-	$\pm \lambda_{4}$	0
10	$\mathrm{O}(2) \times \mathrm{O}(3)$	-	μ_{1}^{2}	0	-	λ_{1}	$2 \lambda_{1}$	-	0	0
11	SO(4)	-	-	0	-	-	-	0	0	0
12	$Z_{2} \times \mathrm{O}(4)$	-	μ_{1}^{2}	0	-	λ_{1}	-	0	0	0
13	$\mathrm{SO}(5)$	-	μ_{1}^{2}	0	-	λ_{1}	$2 \lambda_{1}$	0	0	0

[Pilaftsis '12]

- $S O(5)$ is the maximal symmetry group in the bilinear field space which leaves R^{0} invariant.
- In a specific bilinear basis [Gunion, Haber '05], where $L_{/ J}$ is made diagonal by an $S O(3) \subset S O(5)$ rotation, $\operatorname{Im}\left(\lambda_{5}\right)=0$ and $\lambda_{6}=\lambda_{7}$.
- 7 independent quartic couplings for the $U(1)_{Y}$-invariant 2 HDM potential.
- $S O(5)$ is isomorphic to $S p(4) / Z_{2}$, which gives a one-to-one correspondence between the generators of the maximal reparametrization groups $G_{2 \mathrm{HDM}}^{R}=S O(5)$ and $G_{2 \mathrm{HDM}}^{\Phi}=\operatorname{Sp}(4)$. [PSBD, Pilaftsis '14]

Symmetry Generators

Table 2
Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the $\mathrm{U}(1)_{Y}$-invariant 2 HDM potential. For each symmetry, the maximally broken $S O(5)$ generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.

No.	Symmetry	Generators $T^{a} \leftrightarrow K^{a}$	Discrete group elements	Maximally broken $\mathrm{SO}(5)$ generators	Number of pseudo-Goldstone bosons
1	$Z_{2} \times \mathrm{O}(2)$	T^{0}	$D_{\text {CP1 }}$	-	0
2	$\left(Z_{2}\right)^{2} \times \mathrm{SO}(2)$	T^{0}	$D_{Z_{2}}$	-	0
3	$\left(Z_{2}\right)^{3} \times \mathrm{O}(2)$	T^{0}	$D_{\text {CP2 }}$	-	0
4	$\mathrm{O}(2) \times \mathrm{O}(2)$	T^{3}, T^{0}	-	T^{3}	1 (a)
5	$Z_{2} \times[\mathrm{O}(2)]^{2}$	T^{2}, T^{0}	$D_{\text {CP1 }}$	T^{2}	1 (h)
6	$\mathrm{O}(3) \times \mathrm{O}(2)$	$T^{1,2,3}, T^{0}$	-	$T^{1,2}$	2 (h,a)
7	SO(3)	$T^{0,4,6}$	-	$T^{4,6}$	$2\left(h^{ \pm}\right)$
8	$Z_{2} \times \mathrm{O}$ (3)	$T^{0,4,6}$	$D_{Z_{2}} \cdot D_{\text {CP2 }}$	$T^{4,6}$	$2\left(h^{ \pm}\right)$
9	$\left(Z_{2}\right)^{2} \times \mathrm{SO}(3)$	$T^{0,5,7}$	$D_{\text {CP1 }} \cdot D_{\text {CP2 }}$	$T^{5,7}$	$2\left(h^{ \pm}\right)$
10	$\mathrm{O}(2) \times \mathrm{O}(3)$	$T^{3}, T^{0,8,9}$	-	T^{3}	1 (a)
11	SO(4)	$T^{0,3,4,5,6,7}$	-	$T^{3,5,7}$	$3\left(a, h^{ \pm}\right)$
12	$Z_{2} \times \mathrm{O}(4)$	$T^{0,3,4,5,6,7}$	$D_{Z_{2}} \cdot D_{\text {CP2 }}$	$T^{3,5,7}$	$3\left(a, h^{ \pm}\right)$
13	$\mathrm{SO}(5)$	$T^{0,1,2, \ldots, 9}$	-	$T^{1,2,8,9}$	$4\left(h, a, h^{ \pm}\right)$

- T^{a} and K^{a} are the generators of $S O(5)$ and $S p(4)$ respectively $(a=0, \ldots, 9)$.
- T^{0} is the hypercharge generator in R-space, which is equivalent to the electromagnetic generator $Q_{\mathrm{em}}=\frac{1}{2} \sigma^{0} \otimes \sigma^{0} \otimes \sigma^{3}+K^{0}$ in Φ-space.
- $S p(4)$ contains the custodial symmetry group $S U(2)_{C}$.
- Three independent realizations of custodial symmetry induced by (i) $K^{0,4,6}$, (ii) $K^{0,5,7}$, (iii) $K^{0,8,9}$.

Symmetry Generators

Table 2

Symmetry generators [cf. (10), (14)] and discrete group elements [cf. (17)] for the 13 accidental symmetries of the $\mathrm{U}(1) \mathrm{y}$-invariant 2 HDM potential. For each symmetry, the maximally broken SO(5) generators compatible with a neutral vacuum are displayed, along with the pseudo-Goldstone bosons (given in parentheses) that result from the Goldstone theorem.
$\left.\begin{array}{cllll}\hline \text { No. } & \text { Symmetry } & \begin{array}{l}\text { Generators } \\ T^{a} \leftrightarrow K^{a}\end{array} & \begin{array}{l}\text { Discrete group } \\ \text { elements }\end{array} & \begin{array}{l}\text { Maximally broken } \\ \text { SO(5) generators }\end{array} \\ \hline 1 & Z_{2} \times O(2) & T^{0} & D_{\mathrm{CP1}} & - \\ 2 & \left(Z_{2}\right)^{2} \times \mathrm{SO}(2) & T^{0} & D_{Z_{2}} & - \\ 3 & \left(Z_{2}\right)^{3} \times \mathrm{O}(2) & T^{0} & D_{\mathrm{CP} 2} & - \\ 4 & \mathrm{O}(2) \times \mathrm{O}(2) & T^{3}, T^{0} & - & \mathbf{N}_{\mathrm{CP1}} \\ \text { pseudo-Goldstone bosons }\end{array}\right]$
[Pilaftsis'12]

- T^{a} and K^{a} are the generators of $S O(5)$ and $S p(4)$ respectively $(a=0, \ldots, 9)$.
- T^{0} is the hypercharge generator in R-space, which is equivalent to the electromagnetic generator $Q_{\mathrm{em}}=\frac{1}{2} \sigma^{0} \otimes \sigma^{0} \otimes \sigma^{3}+K^{0}$ in Φ-space.
- $S p(4)$ contains the custodial symmetry group $S U(2)_{C}$.
- Three independent realizations of custodial symmetry induced by (i) $K^{0,4,6}$, (ii) $K^{0,5,7}$, (iii) $K^{0,8,9}$.

Higgs Spectra

- Consider normal vacua with real vevs $v_{1,2}$, where $\sqrt{v_{1}^{2}+v_{2}^{2}}=v_{\mathrm{SM}}$ and $\tan \beta=v_{2} / v_{1}$.
- Eight real scalar fields: $\phi_{j}=\binom{\phi_{j}^{+}}{\frac{1}{\sqrt{2}}\left(v_{j}+\rho_{j}+i \eta_{j}\right)} \quad$ (with $j=1,2$).
- After EWSB, three Goldstone bosons $\left(G^{ \pm}, G^{0}\right)$, which are eaten by $W^{ \pm}$and Z, and five physical scalar fields: two $C P$-even (h, H), one $C P$-odd (a) and two charged ($h^{ \pm}$).
- In the charged sector,

$$
\binom{G^{ \pm}}{h^{ \pm}}=\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right)\binom{\phi_{1}^{ \pm}}{\phi_{2}^{ \pm}}
$$

with $\quad M_{h^{ \pm}}^{2}=\frac{1}{s_{\beta} c_{\beta}}\left[\operatorname{Re}\left(m_{12}^{2}\right)-\frac{1}{2}\left(\left\{\lambda_{4}+\operatorname{Re}\left(\lambda_{5}\right)\right\} s_{\beta} c_{\beta}+\operatorname{Re}\left(\lambda_{6}\right) c_{\beta}^{2}+\operatorname{Re}\left(\lambda_{7}\right) s_{\beta}^{2}\right)\right]$.

- In the $C P$-odd sector,

$$
\begin{aligned}
& \binom{G^{0}}{a}=\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right)\binom{\eta_{1}}{\eta_{2}} . \\
\text { with } \quad M_{a}^{2}= & \frac{1}{s_{\beta} c_{\beta}}\left[\operatorname{Re}\left(m_{12}^{2}\right)-v^{2}\left(\operatorname{Re}\left(\lambda_{5}\right) s_{\beta} c_{\beta}+\frac{1}{2}\left\{\operatorname{Re}\left(\lambda_{6}\right) c_{\beta}^{2}+\operatorname{Re}\left(\lambda_{7}\right) s_{\beta}^{2}\right\}\right)\right] \\
= & M_{h^{ \pm}}^{2}+\frac{1}{2}\left[\lambda_{4}-\operatorname{Re}\left(\lambda_{5}\right)\right] v^{2} .
\end{aligned}
$$

Higgs Spectra

- In the $C P$-even sector,

$$
\begin{aligned}
&\binom{H}{h}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{\rho_{1}}{\rho_{2}} . \\
&\left(M_{s}^{2}\right)_{i j} \equiv\left(\begin{array}{cc}
A & C \\
C & B
\end{array}\right)=M_{A}^{2}\left(\begin{array}{cc}
s_{\beta}^{2} & -s_{\beta} c_{\beta} \\
-s_{\beta} c_{\beta} & c_{\beta}^{2}
\end{array}\right) \\
&+v^{2}\left(\begin{array}{cc}
2 \lambda_{1} c_{\beta}^{2}+\operatorname{Re}\left(\lambda_{5}\right) s_{\beta}^{2}+2 \operatorname{Re}\left(\lambda_{6}\right) s_{\beta} c_{\beta} & \lambda_{34} s_{\beta} c_{\beta}+\operatorname{Re}\left(\lambda_{6}\right) c_{\beta}^{2}+\operatorname{Re}\left(\lambda_{7}\right) s_{\beta}^{2} \\
\lambda_{34} s_{\beta} c_{\beta}+\operatorname{Re}\left(\lambda_{6}\right) c_{\beta}^{2}+\operatorname{Re}\left(\lambda_{7}\right) s_{\beta}^{2} & 2 \lambda_{2} s_{\beta}^{2}+\operatorname{Re}\left(\lambda_{5}\right) c_{\beta}^{2}+2 \operatorname{Re}\left(\lambda_{7}\right) s_{\beta} c_{\beta}
\end{array}\right)
\end{aligned}
$$

with $\lambda_{34}=\lambda_{3}+\lambda_{4}$ and $\tan 2 \alpha=\frac{2 C}{A-B}$. [Pilaftsis, Wagner ' 99]

- The SM Higgs boson is given by

$$
H_{\mathrm{SM}}=\rho_{1} \cos \beta+\rho_{2} \sin \beta=H \cos (\beta-\alpha)+h \sin (\beta-\alpha) .
$$

- With respect to the SM Higgs couplings $H_{S M} V V\left(V=W^{ \pm}, Z\right)$,

$$
g_{h V V}=\sin (\beta-\alpha), \quad g_{H V V}=\cos (\beta-\alpha) .
$$

Unitarity constraints uniquely fix other V-Higgs-Higgs couplings [Gunion, Haber, Kane, Dawson '90]

$$
\begin{aligned}
& g_{h a z}=\frac{g}{2 \cos \theta_{w}} \cos (\beta-\alpha), \quad g_{H a z}=\frac{g}{2 \cos \theta_{w}} \sin (\beta-\alpha), \\
& g_{h^{+} h W^{-}}=\frac{g}{2} \cos (\beta-\alpha), \quad g_{h^{+} H W^{-}}=\frac{g}{2} \sin (\beta-\alpha) .
\end{aligned}
$$

Quark Yukawa Couplings

$$
\begin{aligned}
-\mathcal{L}_{Y}^{q} & =\bar{Q}_{L}\left(h_{1}^{u} \phi_{1}+h_{2}^{U} \phi_{2}\right) u_{R}+\bar{Q}_{L}\left(h_{1}^{d} \tilde{\phi}_{1}+h_{2}^{d} \widetilde{\phi}_{2}\right) d_{R} \\
& =\left(\bar{u}_{L}, \bar{d}_{L}\right)\left(\phi_{1}, \phi_{2}, \widetilde{\phi}_{1}, \widetilde{\phi}_{2}\right)\left(\begin{array}{cc}
h_{1}^{u} & 0 \\
h_{2}^{u} & 0 \\
0 & h_{1}^{d} \\
0 & h_{2}^{d}
\end{array}\right)\binom{u_{R}}{d_{R}} .
\end{aligned}
$$

- Introduced a non-square Yukawa coupling matrix \mathcal{H}.
- The three independent realizations of the custodial symmetry can be identified as those satisfying $\left[\mathcal{U}_{C}^{a}, \mathcal{H}\right]=\mathbf{0}_{4 \times 2}$, where the $S p(4)$ generators in Φ-space are given by $K^{a}=\mathcal{U}_{C}^{a} \otimes \sigma^{0}$. [PSBD, Pilattis ' ${ }^{14]}$
- By convention, choose $h_{1}^{u}=0$. For Type-I (Type-II) 2HDM, $h_{1}^{d}\left(h_{2}^{d}\right)=0$.
- Quark yukawa couplings w.r.t. the SM are given by

Quark Yukawa Couplings

$$
\begin{aligned}
-\mathcal{L}_{Y}^{q} & =\bar{Q}_{L}\left(h_{1}^{u} \phi_{1}+h_{2}^{u} \phi_{2}\right) u_{R}+\bar{Q}_{L}\left(h_{1}^{d} \widetilde{\phi}_{1}+h_{2}^{d} \widetilde{\phi}_{2}\right) d_{R} \\
& =\left(\bar{u}_{L}, \bar{d}_{L}\right)\left(\phi_{1}, \phi_{2}, \widetilde{\phi}_{1}, \widetilde{\phi}_{2}\right)\left(\begin{array}{cc}
h_{1}^{u} & 0 \\
h_{2}^{u} & 0 \\
0 & h_{1}^{d} \\
0 & h_{2}^{d}
\end{array}\right)\binom{u_{R}}{d_{R}}
\end{aligned}
$$

- Introduced a non-square Yukawa coupling matrix \mathcal{H}.
- The three independent realizations of the custodial symmetry can be identified as those satisfying $\left[\mathcal{U}_{C}^{a}, \mathcal{H}\right]=\mathbf{0}_{4 \times 2}$, where the $S p(4)$ generators in Φ-space are given by $K^{a}=\mathcal{U}_{C}^{a} \otimes \sigma^{0} .[$ PSBD, Pilaftsis '14]
- By convention, choose $h_{1}^{u}=0$. For Type-I (Type-II) 2HDM, $h_{1}^{d}\left(h_{2}^{d}\right)=0$.
- Quark yukawa couplings w.r.t. the SM are given by

Coupling	Type-I	Type-II
$g_{h t \bar{t}}$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
$g_{h b \bar{b}}$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
$g_{H t \bar{t}}$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$
$g_{H b \bar{b}}$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
$g_{\text {att }}$	$\cot \beta$	$\cot \beta$
$g_{a b \bar{b}}$	$-\cot \beta$	$\tan \beta$

Maximally Symmetric 2HDM

- In the $S O$ (5)-symmetric limit, $\lambda_{2}=\lambda_{1}, \lambda_{3}=2 \lambda_{1}, \lambda_{4}=\lambda_{5}=\lambda_{6}=\lambda_{7}=0$.
- A single quartic coupling λ :

$$
V=-\mu^{2}\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)+\lambda\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)^{2} .
$$

- Four Goldstone bosons ($h, a, h^{ \pm}$), while $M_{H}^{2}=2 \lambda_{2} v^{2}$ and $\alpha=\beta$.
- Natural alignment limit.
- Custodial symmetry broken by g^{\prime} and Yukawa couplings, as in the SM.

- Not enough for a Higgs spectrum satisfying the experimental constraints.
- Must include soft breaking by $\operatorname{Re}\left(m_{12}^{2}\right) \neq 0$.

Maximally Symmetric 2HDM

- In the $S O$ (5)-symmetric limit, $\lambda_{2}=\lambda_{1}, \lambda_{3}=2 \lambda_{1}, \lambda_{4}=\lambda_{5}=\lambda_{6}=\lambda_{7}=0$.
- A single quartic coupling λ :

$$
V=-\mu^{2}\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)+\lambda\left(\left|\phi_{1}\right|^{2}+\left|\phi_{2}\right|^{2}\right)^{2} .
$$

- Four Goldstone bosons ($h, a, h^{ \pm}$), while $M_{H}^{2}=2 \lambda_{2} v^{2}$ and $\alpha=\beta$.
- Natural alignment limit.
- Custodial symmetry broken by g^{\prime} and Yukawa couplings, as in the SM.

$$
S O(5) \xrightarrow{g^{\prime} \neq 0} \quad O(3) \otimes O(2) \quad \xrightarrow{y_{t} \neq y_{b}} \quad O(2) \otimes O(2)
$$

- Not enough for a Higgs spectrum satisfying the experimental constraints.
- Must include soft breaking by $\operatorname{Re}\left(m_{12}^{2}\right) \neq 0$.

g^{\prime} Effect

No.	Symmetry	Generators $T^{a} \leftrightarrow K^{a}$	Discrete group elements	Maximally broken SO(5) generators	Number of pseudo-Goldstone bosons
1	$Z_{2} \times \mathrm{O}(2)$	T^{0}	$D_{\text {CP1 }}$	-	0
2	$\left(Z_{2}\right)^{2} \times \mathrm{SO}(2)$	T^{0}	$D_{Z_{2}}$	-	0
3	$\left(Z_{2}\right)^{3} \times O(2)$	T^{0}	$D_{\text {CP2 }}$	-	0
4	$\mathrm{O}(2) \times \mathrm{O}(2)$	T^{3}, T^{0}	-	T^{3}	1 (a)
5	$Z_{2} \times[0(2)]^{2}$	T^{2}, T^{0}	$D_{\text {CP1 }}$	T^{2}	1 (h)
6	$\mathrm{O}(3) \times \mathrm{O}(2)$	$T^{1,2,3}, T^{0}$	-	$T^{1,2}$	$2(h, a)$
7	SO(3)	$T^{0,4,6}$	-	$T^{4,6}$	$2\left(h^{ \pm}\right)$
8	$Z_{2} \times 0$ (3)	$T^{0,4,6}$	$D_{Z_{2}} \cdot D_{\text {CP2 }}$	$T^{4,6}$	$2\left(h^{ \pm}\right)$
9	$\left(Z_{2}\right)^{2} \times \mathrm{SO}(3)$	$T^{0,5,7}$	$D_{\text {CP1 }} \cdot D_{\text {CP2 }}$	$T^{5,7}$	$2\left(h^{ \pm}\right)$
10	$\mathrm{O}(2) \times \mathrm{O}(3)$	$T^{3}, T^{0,8,9}$	-	T^{3}	1 (a)
11	SO(4)	$T^{0,3,4,5,6,7}$	-	$T^{3,5,7}$	$3\left(a, h^{ \pm}\right)$
12	$Z_{2} \times \mathrm{O}(4)$	$T^{0,3,4,5,6,7}$	$D_{Z_{2}} \cdot D_{\text {CP2 }}$	$T^{3,5,7}$	$3\left(a, h^{ \pm}\right)$
13	SO(5)	$T^{0,1,2, \ldots, 9}$	-	$T^{1,2,8,9}$	$4\left(h, a, h^{ \pm}\right)$

Yukawa Coupling Effects

$\left.\begin{array}{clllll}\hline \text { No. } & \text { Symmetry } & \begin{array}{l}\text { Generators } \\ T^{a} \leftrightarrow K^{a}\end{array} & \begin{array}{l}\text { Discrete group } \\ \text { elements }\end{array} & \begin{array}{l}\text { Maximally broken } \\ \text { SO(5) generators }\end{array} \\ \hline 1 & Z_{2} \times \mathrm{O}(2) & T^{0} & D_{\mathrm{CP} 1} & - \\ 2 & \left(Z_{2}\right)^{2} \times \mathrm{SO}(2) & T^{0} & D_{Z_{2}} & - \\ 3 & T^{0} & D_{\mathrm{CP} 2} & - & 0 \\ \text { pseudo-Goldstone bosons }\end{array}\right]$

Soft Breaking Effects

- In the $S O(5)$ limit for quartic couplings, but with $\operatorname{Re}\left(m_{12}^{2}\right) \neq 0$,

$$
\begin{aligned}
M_{S}^{2} & =M_{a}^{2}\left(\begin{array}{cc}
s_{\beta}^{2} & -s_{\beta} c_{\beta} \\
-s_{\beta} c_{\beta} & c_{\beta}^{2}
\end{array}\right)+2 \lambda_{2} v^{2}\left(\begin{array}{cc}
c_{\beta}^{2} & s_{\beta} c_{\beta} \\
s_{\beta} c_{\beta} & s_{\beta}^{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
c_{\beta} & -s_{\beta} \\
s_{\beta} & c_{\beta}
\end{array}\right)\left(\begin{array}{cc}
2 \lambda_{2} v^{2} & 0 \\
0 & M_{a}^{2}
\end{array}\right)\left(\begin{array}{cc}
c_{\beta} & s_{\beta} \\
-s_{\beta} & c_{\beta}
\end{array}\right) \equiv O \widehat{M}_{S}^{2} O^{\top}
\end{aligned}
$$

$$
M_{H}^{2}=2 \lambda_{2} v^{2}, \quad \text { and } \quad M_{h}^{2}=M_{a}^{2}=M_{h^{ \pm}}^{2}=\frac{\operatorname{Re}\left(m_{12}^{2}\right)}{s_{\beta} c_{\beta}}
$$

- For $\operatorname{Re}\left(m_{12}^{2}\right) \gg v^{2}$, obtain decoupling limit.
- For the general case,

$$
\widehat{M}_{S}^{2}=\left(\begin{array}{cc}
2 v^{2}\left(\lambda_{1} c_{\beta}^{4}+\lambda_{33} s_{\beta}^{2} c_{\beta}^{2}+\lambda_{2} s_{\beta}^{4}\right) & v^{2} s_{\beta} c_{\beta}\left[s_{\beta}^{2}\left(2 \lambda_{2}-\lambda_{34}\right)-c_{\beta}^{2}\left(2 \lambda_{1}-\lambda_{34}\right)\right] \\
v^{2} s_{\beta} c_{\beta}\left[s_{\beta}^{2}\left(2 \lambda_{2}-\lambda_{34}\right)-c_{\beta}^{2}\left(2 \lambda_{1}-\lambda_{34}\right)\right] & M_{a}^{2}+2 v^{2} s_{\beta}^{2} c_{\beta}^{2}\left(\lambda_{1}+\lambda_{2}-\lambda_{34}\right)
\end{array}\right)
$$

- Identify $\lambda_{\mathrm{SM}}=2\left(\lambda_{1} c_{\beta}^{4}+\lambda_{34} s_{\beta}^{2} c_{\beta}^{2}+\lambda_{2} s_{\beta}^{4}\right)$.
- Alignment obtained for $\tan ^{2} \beta=\frac{2 \lambda_{1}-\lambda_{34}}{2 \lambda_{2}-\lambda_{34}}$, independent of M_{a}. (similar to [Gunion, Haber '03; Carena, Low, Shah, Wagner '13])

Theoretical and Experimental Constraints

- Stability of the potential: [Branco et al'12]

$$
\lambda_{1,2}>0, \quad \lambda_{3}+\sqrt{\lambda_{1} \lambda_{2}}>0, \quad \lambda_{3}+\lambda_{4}+\sqrt{\lambda_{1} \lambda_{2}}-\operatorname{Re}\left(\lambda_{5}\right)>0 .
$$

- Perturbativity of the Higgs self-couplings: $\left\|S_{\phi \phi \rightarrow \phi \phi}\right\|<\frac{1}{8}$.
- Electroweak precision observables.
- LHC signal strengths of the light $C P$-even Higgs boson.
- Limits on heavy CP-even scalar from $H \rightarrow W W, Z Z, \tau \tau$ searches.
- Flavor observables such as B_{s} mixing and $B \rightarrow X_{s} \gamma$.

With SO(5) Boundary Conditions at μ_{X}

[PSBD, Pilaftsis (preliminary)]

With SO(5) Boundary Conditions at μ_{X}

[PSBD, Pilaftsis (preliminary)]

With SO(5) Boundary Conditions at μ_{X}

[PSBD, Pilaftsis (preliminary)]

Constraints on Higgs Sector

[PSBD, Pilaftsis (preliminary)]

Constraints on $\tan \beta$

[PSBD, Pilaftsis (preliminary)]

Implications for LHC

Higgs production processes:

[Craig, Galloway, Thomas '13]

Implications for LHC

- Promising Channels: Heavy Higgs $\rightarrow 2$ Light Higgs, $t \bar{t}$ (low $\tan \beta$), $b \bar{b}, \tau \bar{\tau}$ (moderate-high $\tan \beta$).
- For $t \bar{t}$ mode, gluon fusion process not helpful (large background).
- $t \bar{t} h$ production mode, with $h \rightarrow t \bar{t}$ gives a unique $t \bar{t} t \bar{t}$ signal, with one $M_{t \bar{t}}$ around m_{h}.

[PSBD, Pilaftsis (preliminary)]

Conclusion

- 2HDM potential in the bilinear scalar field formalism.
- One-to-one correspondence between Φ-space and R-space.
- Maximal symmetric group is $S O(5)$.
- Alignment limit can be realized naturally, independent of other model parameters.
- Definite predictions for Higgs spectra.
- Interesting consequences at colliders.

Conclusion

- 2HDM potential in the bilinear scalar field formalism.
- One-to-one correspondence between Φ-space and R-space.
- Maximal symmetric group is $S O(5)$.
- Alignment limit can be realized naturally, independent of other model parameters.
- Definite predictions for Higgs spectra.
- Interesting consequences at colliders.

