Deformed Wess-Zumino Model

Carlos Palechor Ipia, Alysson Fabio Ferrari

Universidade Federal do ABC

22nd International conference on Supersymemetry and Unification of Fundamental Interactions

Outline

Non-anticommutativity

2 Hopf Algebra and Deformation

- General formulation
- Deformed Lie Algebra

3 Susy in Three Dimensions.

- Susy in three dimensions and Hopf algebra
- Susy three dimensions deformation

Conclusion

Hopf Algebra and Deformation Conclusion

Susy in Three Dimensions.

Non-anticommutativity

Non-anticommutativity of fermion coordinates of superspace N Seiberg. Journal of High Energy Physics, 6:10, June 2003.

$$\left\{\theta^a, \theta^b\right\} = C^{ab} \tag{1}$$

The Susy generators

$$Q_a = \partial_a - i(\sigma_{a\dot{a}})^{\mu} \theta^{\dot{a}} \partial_{\mu} \qquad Q_{\dot{a}} = -\partial_{\dot{a}} + i\theta^a (\sigma_{a\dot{a}})^{\mu} \partial_{\mu}$$
(2)

do not satisfies the standard susy relation

$$\{Q_a, Q_b\} = 0, \qquad \{Q_{\dot{a}}, Q_{\dot{b}}\} = -4C^{ab}\sigma^{\mu}_{a\dot{a}}\sigma^{\nu}_{b\dot{b}}\frac{\partial^2}{\partial y^{\mu}\partial y^{\nu}}, \quad (3)$$

It is named Susy $\mathcal{N} = 1/2$.

ntroduction

Hopf Algebra and Deformation Susy in Three Dimensions. Conclusion

Non-anticommutativity

Non-anticomutativity in three spacetime dimensions A. F. Ferrari, M. Gomes, J. R. Nascimento, A. Yu. Petrov, and A. J. da Silva. *Phys. Rev. D*, 74:125016, Dec 2006.

$$\{\theta_a, \theta_b\} = \Sigma_{ab} \,, \tag{4}$$

but

$$\{Q_a, Q_b\} = 2P_{ab} - \Sigma^{ab} P_{ma} P_{nb}$$

To preserved the supersymmetry

$$\tilde{Q}_a = Q_a + \frac{i}{2} \Sigma^{bc} \partial_b P_{ca} \tag{6}$$

The new generators satisfies

$$\left\{\tilde{Q}_a, \tilde{Q}_b\right\} = 2P_{ab}.\tag{7}$$

General formulation Deformed Lie Algebra

The Hopf algebra \mathcal{H} is a vector space

Productcoproduct $\mu : \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$ $\Delta : \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ $a \otimes b \to \mu(a \otimes b) = a \cdot b$ $c \to \Delta(h) = \sum_{i} (h_1)_i \otimes (h_2)_i$

and exist one antihomomorfism, $S:\mathcal{H}\to\mathcal{H}$

Antipode

Hopf Algebra

$$\begin{split} S\left(a\cdot b\right) &= S\left(b\right)\cdot S\left(a\right), \\ S\left(\mathbf{1}\right) &= \mathbf{1}, \end{split} \tag{8}$$

General formulation Deformed Lie Algebra

Hopf algebra actions or H-modules

Let (N,m) be \mathcal{H} -Module

$$\alpha: \mathcal{H} \otimes N \to N$$
$$h \otimes n \to \alpha(h, n) = h \rhd n$$

(10)

compatibility between action and H-modulo N

$$h \triangleright (m(v \otimes w)) = m(\Delta(h) \triangleright (v \otimes w)), \quad v, w \in N$$
(11)

For a Hopf algebra \mathcal{H} , there is an action on itself

Adjoint action

$$ad: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$$
$$(h, x) \to ad_h x = h \blacktriangleright x = \sum (h_1)_i \cdot x \cdot S((h_2)_i)$$
(12)

<mark>General formulation</mark> Deformed Lie Algebra

Enveloping algebra $U\left(\mathfrak{g}\right)$ has a natural Hopf algebra structure, if $\tau_{i}\in\mathfrak{g}$

$\Delta\left(\tau_{i}\right)=\tau_{i}\otimes1+1\otimes\tau_{i},$	$\Delta\left(1\right)=1,$	(13)
$S\left(\tau_{i}\right)=-\tau_{i},$	$S\left(1\right) =1,$	(14)

The adjoin action of $U(\mathfrak{g})$ is the Lie commutator

Lie bracket $ad_{\tau_i}\tau_j = (\tau_i)_1 \cdot \tau_j \cdot S((\tau_i)_2)$ $= \tau_i \cdot \tau_j - \tau_j \cdot \tau_i = [\tau_i, \tau_j] = C_{ij}^k \tau_k \in \mathfrak{g} \quad \forall \tau_j, \tau_i \in \mathfrak{g}.$ (15)

General formulation Deformed Lie Algebra

Deformation using Drinfel'd twist

A twist is an element $\mathcal{F} \in \mathcal{H} \otimes \mathcal{H}$

$$\mathcal{F} = f^a \otimes f_a.$$
 (16) $\mathcal{F}^{-1} = \bar{f}^a \otimes \bar{f}_a,$ (17)

it satisfies

2-cocycle $(\mathbf{1} \otimes \mathcal{F}) (id \otimes \Delta) \mathcal{F} = (\mathcal{F} \otimes \mathbf{1}) (\Delta \otimes id) \mathcal{F}$ (18)

General formulation Deformed Lie Algebra

Deformed Lie Algebra

The twist can modified product m of the N and μ of $U(\mathfrak{g})$

 $\mathbf{Produto} \star \mathbf{in} \; N$

$$u \star v = \mu \left(\mathcal{F}^{-1} \rhd (u \otimes v) \right) = \left(\bar{f}^a \rhd u \right) \cdot \left(\bar{f}_a \rhd v \right) \ u, v \in N.$$

Produto \star in $U(\mathfrak{g})$

$$\tau_i \star \tau_j = \mu \left(\mathcal{F}^{-1} \blacktriangleright (\tau_i \otimes \tau_j) \right) = \left(\bar{f}^a \blacktriangleright \tau_i \right) \cdot \left(\bar{f}_a \blacktriangleright \tau_j \right) \ \tau_i, \tau_j \in \mathfrak{g}.$$
(19)

These are new algebras and $N_{\star} = (N, \star)$ and $U^{\star}(\mathfrak{g}) = (U(\mathfrak{g}), \star)$

But \star -elements in $U^{\star}(\mathfrak{g})$ do not satisfy

$$[\tau_i \star \tau_j] = \tau_i \star \tau_j - \tau_j \star \tau_i \neq C_{ij}^k \tau_k$$
(20)

General formulation Deformed Lie Algebra

P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess. Class and Quantum grav, 23 1883, 2006.

deformed generators

Let $u \in \mathfrak{g}$

$$X_{u} = \bar{f}^{a} \cdot u \cdot \chi \cdot S(\bar{f}_{a}) \quad where \quad \chi = \mu (id \otimes S) \mathcal{F}.$$

$$\Delta_{\star}(X_{u}) = \mathcal{F}(X_{u} \otimes 1 + 1 \otimes X_{u}) \mathcal{F}^{-1}$$
(22)

Lie Algebra bracket

$$[X_u \star X_v] = X_u \star X_v - X_v \star X_u = X_{[u,v]} \quad \forall u, v \in \mathfrak{g}$$
(23)

Deformed Lie algebra actions

$$X_u \vartriangleright^{\star} n = u \vartriangleright n \quad \forall u \in \mathfrak{g}, \ \forall n \in N_{\star}$$

Carlos Andrés Palechor Ipia

(24)

General formulation Deformed Lie Algebra

Lie Superalgebras

The formulas above (8),(15),(19),(21),(23) can be extended to superalgebras case

Extension to \mathbb{Z}_2 -Graded Lie

$$S(u \cdot v) = (-1)^{\kappa(v)\kappa(u)} S(v) \cdot S(u).$$
⁽²⁵⁾

$$u \blacktriangleright v = u(v) = (-1)^{\kappa(v)\kappa(u_2)} u_1 \cdot v \cdot S(u_2).$$
(26)

$$u \star v = \sum_{a} (-1)^{\kappa(\bar{f}_a)\kappa(u)} \bar{f}^a(u) \cdot \bar{f}_a(v).$$
(27)

$$X_u = \sum_a (-1)^{\kappa(\bar{f}_a)\kappa(u)} \bar{f}^a \cdot u \cdot \chi \cdot S(\bar{f}_a).$$
(28)

$$[X_u \star X_v] = X_u \star X_v - (-1)^{\kappa(u)\kappa(v)} X_v \star X_u = X_{[u,v]}.$$
 (29)

Susy in three dimensions and Hopf Algebra

The Lorentz group act on real two-component spinor $\psi^a = (\psi^1, \psi^2)$.

superespaço

$$z = (x^{ab}, \theta^c) \qquad where \qquad x^{ab} = (\sigma^{\mu})^{ab} x_{\mu}$$
(30)

such that

$$[x^{mn}, x^{rs}] = [x^{mn}, \theta^a] = 0,$$
(31)

$$\left\{\theta^a, \theta^b\right\} = 0. \tag{32}$$

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

The SUSY properties can be written using the Hopf algebra language

coproduct

$$\Delta(A) = A \otimes 1 + 1 \otimes A$$

adjoint action

$$A \blacktriangleright B = [A, B] = A \cdot B - (-1)^{\kappa(B)\kappa(A)} B \cdot A.$$
(33)

The Hopf algebra is defined by

SUSY generators

$$[P_{ab}, P_{cd}] = 0, \quad \{Q_a, Q_b\} = 2P_{ab}, \quad [Q_a, P_{cd}] = 0.$$
(34)

supercovariant Derivative

$$[D_a, Q_b] = 0, \quad [D_a, P_{cd}] = 0, \quad [D_a, D_b] = 2P_{cd}.$$
 (35)

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

this algebra is represented by differential operator

Differential operator

$$Q_a = i \left(\partial_a - \theta^c i \partial_{ca} \right), \quad P_{ab} = i \partial_{ab}, \quad D_a = \partial_a + i \, \theta^b \partial_{ba}. \tag{36}$$

and act on superfield algebra \boldsymbol{N}

superfield

$$\Phi(x,\theta) = A(x) + \theta^{a}\psi_{a}(x) - \theta^{2}F(x).$$
(37)

with product m

$$m\left(\Phi\otimes\Psi\right) = \Phi\left(z\right)\cdot\Psi\left(z\right) \quad \Phi,\Psi\in N \tag{38}$$

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

the action is compatible with product m

compatibility

$$A (\Phi \cdot \Psi) = m \Big(\Delta (A) (\Phi \otimes \Psi) \Big)$$

= $m \Big(A (\Phi) \otimes \Psi + (-1)^{\kappa(A)\kappa(\Psi)} \Phi \otimes A (\Psi) \Big)$
= $A (\Phi) \cdot \Psi + (-1)^{\kappa(A)\kappa(\Psi)} \Phi \cdot A (\Psi).$ (39)

SUSY transformation law

tranformation law on the fields

$$\delta_{\xi}\Phi\left(x,\theta\right) \equiv i\xi^{a}Q_{a}\Phi\left(x,\theta\right).$$
(40)

$$\delta_{\xi} \left(\Phi \cdot \Psi \right) = \delta_{\xi} \left(\Phi \right) \cdot \Psi + \Phi \cdot \delta_{\xi} \left(\Psi \right)$$
(41)

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

Wess-Zumino Model

The Susy actions is defined by

Wess-Zumino Action

$$S = \int d^3x \, d^2\theta \, \left[\frac{1}{2} \Phi D^2 \Phi + \frac{1}{2} m \Phi^2 + \frac{1}{6} \lambda \, \Phi^3 \right]$$
(42)

the Susy action can be rewritten as

Action in Components

$$S = \int d^3x \left\{ \frac{1}{2} \left[F^2 + A \Box A + \psi^a i \partial^b_a \psi_b \right] + m \left(\psi^2 + AF \right) + \lambda \left(A \psi^2 + \frac{1}{2} A^2 F \right) \right\}$$
(43)

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

Susy three dimensions deformation

The algebra \Im to be deformed is

commutation relations S

$\{Q_a, Q_b\} = 2P_{ab},$	(44a)
$\{D_a, D_b\} = 2P_{cd},$	(44b)
$\{D_a,\partial_b\}=P_{ab},$	(44c)
$\{Q_a,\partial_b\}=-iP_{ab},$	(44d)
$\{\partial_a, \partial_b\} = 0,$	(44e)
$[P_{ab}, P_{cd}] = [Q_a, P_{cd}] = [\partial_a, P_{cd}] = \{D_a, Q_b\} = 0.$	(44f)

its enveloping algebra will be denoted by $\mathcal{U}(\Im)$.

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

In this case, we use the twist

Twist

$$\mathcal{F} = e^{\frac{1}{2}C^{ab}\partial_a\otimes\partial_b}$$

= $1\otimes 1 + \frac{1}{2}C^{ab}\partial_a\otimes\partial_b - \frac{1}{8}C^{ab}C^{mn}\partial_a\partial_m\otimes\partial_b\partial_n.$ (45)

where we used the relations

$$(A \otimes B) \cdot (C \otimes D) = (-1)^{\kappa(B)\kappa(C)} (A \cdot C \otimes B \cdot D)$$
$$(\partial_a)^3 = 0$$
(46)

From this twist we can find the deformed algebra $\mathcal{U}^{\star}(\Im) = (\mathcal{U}(\Im), \star)$

$$\{Q_a * Q_b\} = Q_a * Q_b + Q_b * Q_a,$$

= $\{Q_a, Q_b\} + C^{mn} \{\partial_m, Q_a\} \{\partial_n, Q_b\},$
= $2P_{ab} - C^{mn} P_{ma} P_{nb}.$ (47)

Following the prescription given in the deformation section

Deformed generator

$$X_{Q_a} = \sum_{c} (-1)^{\kappa(\bar{f}_c)\kappa(Q_a)} \bar{f}^c Q_a S(\bar{f}_c),$$

$$= Q_a - \frac{1}{2} C^{lm} \partial_m \{Q_a, \partial_l\},$$

$$= Q_a + \frac{i}{2} C^{lm} \partial_m P_{al},$$
 (48)

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

the same way

Deformed generators

$$X_{D_a} = D_a - \frac{i}{2} C^{lm} \ \partial_m P_{al},\tag{49}$$

$$X_{P_{ab}} = P_{ab}, \tag{50}$$

$$X_{\partial_a} = \partial_a. \tag{51}$$

Deformed coproducts

$$\Delta_{\star} (X_{Q_a}) = X_{Q_a} \otimes 1 + 1 \otimes X_{Q_a} - C^{mn} \partial_m \otimes \partial_{na},$$
(52)

$$\Delta_{\star} (X_{D_a}) = X_{D_a} \otimes 1 + 1 \otimes X_{D_a} - iC^{mn} \partial_m \otimes \partial_{na},$$
(53)

$$\Delta_{\star} (X_{P_{ab}}) = X_{P_{ab}} \otimes 1 + 1 \otimes X_{P_{ab}},$$
(54)

$$\Delta_{\star} (X_{\partial_a}) = X_{\partial_a} \otimes 1 + 1 \otimes X_{\partial_a},$$
(55)

The algebra \Im^\star has the same Susy algebra commutation relation

$$\begin{cases} X_{Q_a} * X_{Q_b} \} = 2X_{P_{ab}}, & (56) \\ \{X_{D_a} * X_{D_b} \} = 2X_{P_{cd}}, & (57) \\ \{X_{D_a} * X_{\partial_b} \} = X_{P_{ab}}, & (58) \\ \{X_{Q_a} * X_{\partial_b} \} = -iX_{P_{ab}}, & (59) \\ \{X_{\partial_a} * X_{\partial_b} \} = 0, & (60) \\ [X_{P_{ab}} * X_{P_{cd}}] = [X_{Q_a} * X_{P_{cd}}] = [X_{\partial_a} * X_{P_{cd}}] = \{X_{Q_a} * X_{D_b}\} = 0. \\ (61) \end{cases}$$

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

The product \star in not commutative on the fields

$$\Phi(z) \star \Psi(z) = m^{\mathcal{F}}(\Phi \otimes \Psi) = m(\mathcal{F}^{-1} \rhd (\Phi \otimes \Psi))$$

= $(-1)^{\kappa(\Phi)\kappa(\bar{f}_a)} (\bar{f}^a \triangleright \Phi) \cdot (\bar{f}_a \triangleright \Psi)$
= $\Phi(z) \cdot \Psi(z) - \frac{1}{2}(-1)^{\kappa(\Phi)} C^{ab} (\partial_a \Phi(z)) \cdot (\partial_b \Psi(z)) - \frac{1}{8} C^{ab} C^{mn} (\partial_a \partial_m \Phi(z)) \cdot (\partial_b \partial_n \Psi(z)).$ (62)

deformed Superspace

$$\begin{split} & [x^{mn} \stackrel{\star}{,} x^{rs}] = [x^{mn} \stackrel{\star}{,} \theta^a] = 0, \\ & \left\{ \theta^a \stackrel{\star}{,} \theta^b \right\} = C^{ab}. \end{split}$$

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

by construction the algebra \Im^* is compatible wit star product \star above

$$X_A \triangleright (\Phi(z) \star \Psi(z)) = m^{\mathcal{F}} (\Delta_{\star}(X_A) \triangleright (\Phi \otimes \Psi)).$$
(63)

deformed Susy transformation

$$\delta_{\xi}^{\star} \Phi(x,\theta) = i\xi^a X_{Q_a} \triangleright \Phi(x,\theta) \bullet$$

$$= i\xi^a Q_a \Phi(x,\theta). \quad (64)$$

Deformed Susy transformation law on field product

$$\delta_{\xi}^{\star}(\Phi \star \Psi) = \left(\delta_{\xi}^{\star}\Phi\right) \star \Psi + \Phi \star \left(\delta_{\xi}^{\star}\Psi\right) + C^{mn} \partial_{m}\Phi \star \xi^{a} \partial_{an}\Psi.$$
 (65)

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

The star product * can be rewritten as

$$\Phi \star \Psi = \Phi\left(z\right) \cdot \Psi\left(z\right) - \frac{1}{2} (-1)^{\kappa(\Phi)} \, C^{ab} \, \partial_a \Big(\Phi \cdot \partial_b \Psi \Big) - \frac{1}{8} \, C^{ab} C^{mn} \, \partial_a \partial_m \Big(\Phi \cdot \partial_b \partial_n \Psi \Big) \, .$$

therefore

$$\int d^3x \, d^2\theta \, \Phi \star \Psi = \int d^3x \, d^2\theta \, \Phi \cdot \Psi. \tag{66}$$

Then

there are not modifications

$$\mathcal{S}_{cin}^{\star} + \mathcal{S}_{m}^{\star} = -\frac{1}{4} \int d^{3}x \, d^{2}\theta \left(D^{b}\Phi \right) \cdot \left(D_{b}\Phi \right) + \frac{1}{2} \int d^{3}x \, d^{2}\theta \, m\Phi \cdot \Phi. \tag{67}$$

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

The deformation is not trivial to interaction terms

$$\mathcal{S}_{I}^{\star} = \alpha \int d^{3}x \, d^{2}\theta \, \left(\Phi\right)_{\star}^{n} \tag{68}$$

$$= \alpha \int d^3x \, d^2\theta \, \underbrace{\Phi \star \cdots \star \Phi}_{n-vezes}. \tag{69}$$

Cubic Interaction

$$\mathcal{S}_{I}^{\star} = \frac{\lambda}{6} \int d^{3}x \, d^{2}\theta \, \left(\Phi\right)_{\star}^{3} \tag{70}$$

$$= \frac{\lambda}{6} \int d^3x \, d^2\theta \, \Phi \star \Phi \star \Phi. \tag{71}$$

Susy in three dimensions and Hopf algebra Susy three dimensions deformation

Using the definition of \star product

$$S_I^{\star} = \frac{\lambda}{6} \int d^3x \, d^2\theta \, \left(\Phi^3 - \frac{1}{8} C^{lm} C^{nk} \, \Phi \partial_l \partial_n \Phi \partial_m \partial_k \Phi \right), \tag{72}$$

$$= \frac{\lambda}{6} \int d^3x \, d^2\theta \, \Phi^3 + \frac{\lambda}{14} \int d^3x \, \det C F^3 \tag{73}$$

therefore

N Seiberg. Journal of High Energy Physics, 6:10, June 2003.

Total action

$$\mathcal{S}^{\star} = \mathcal{S}^{\star}_{cin} + \mathcal{S}^{\star}_{m} + \mathcal{S}^{\star}_{I}, \tag{74}$$

$$= \mathcal{S} + \frac{\lambda}{14} \int d^3x \, det \, (C) \, F^3 \, \bigcirc \, \tag{75}$$

Conclusion

- Is possible to define one twist using Grassmannian derivatives.
- Find us the same deformed Susy generators of the literature the consistent way using the Hopf Algebra.
- Show us that the deformed algebra satisfies the same Susy commutation relations.
- The modification in the action only can be obtained of the interaction terms.

Perspectives

The perspectives are study the quantum correction to two loops and study the renormalization group equation for the non anticommutation parameter C^{ab} .

Thank for the Financial Support to

Thanks for You Atention

Questions?

Quantum correction

The action can be expressed in superfield terms

Total action

$$S^{\star} = \int d^3x \, d^2\theta \, \left[\frac{1}{2} \Phi D^2 \Phi + \frac{1}{2} m \Phi^2 + \frac{1}{6} \lambda \, \Phi^3 + \frac{\lambda}{14} U \, (D^2 \Phi)^3 \right], \tag{76}$$

where U is called the spurion field

Spurion

$$U = \det\left(C\right)\theta^2.$$

(77)

M. T. Grisaru, S. Penati, A. Romagnoni. Journal of High Energy Physics. 0308 (2003) 003 Using the quantum-background splitting $\Phi \to \Phi + \Phi_q$

The propagator is

Propagator

$$\langle \Phi \Phi \rangle = \frac{D^2 - m}{k^2 + m^2} \,\delta\left(\theta - \theta'\right) \tag{78}$$

Carlos Andrés Palechor Ipia

One Loop

The first vertex, we have additional diagrams

To process of high energy we can set that external momentums taking to zero

The kind of integral that appear in these diagrams are

Diagram's integral

$$\int \frac{d^3k}{(2\pi)^3} \frac{1}{(k^2+m^2)}, \int \frac{d^3k}{(2\pi)^3} \frac{(k^2)^2}{(k^2+m^2)^3}, \dots, \int \frac{d^3k}{(2\pi)^3} \frac{(k^2)^a}{(k^2+m^2)^b}$$

Using

Dimensional regularization

$$\int \frac{d^{n}k}{(2\pi)^{n}} \frac{\left(k^{2}\right)^{a}}{\left(k^{2}+N\right)^{b}} = i^{n+3} \frac{\Gamma\left(b-a-\frac{1}{2}n\right)\Gamma\left(a+\frac{1}{2}n\right)}{\Gamma\left(b\right)\Gamma\left(\frac{1}{2}n\right)} N^{-\left(b-a-\frac{1}{2}n\right)}$$

The integral are finite.