Deformed Wess-Zumino Model

Carlos Palechor Ipia, Alysson Fabio Ferrari

Universidade Federal do ABC
22nd International conference on Supersymemetry and Unification of Fundamental Interactions

Outline

(9) Introduction

- Non-anticommutativity
(2) Hopf Algebra and Deformation
- General formulation
- Deformed Lie Algebra

(3) Susy in Three Dimensions.

- Susy in three dimensions and Hopf algebra
- Susy three dimensions deformation
(4) Conclusion

Non-anticommutativity

Non-anticommutativity of fermion coordinates of superspace N Seiberg. Journal of High Energy Physics, 6:10, June 2003.

$$
\begin{equation*}
\left\{\theta^{a}, \theta^{b}\right\}=C^{a b} \tag{1}
\end{equation*}
$$

The Susy generators

$$
\begin{equation*}
Q_{a}=\partial_{a}-i\left(\sigma_{a \dot{a}}\right)^{\mu} \theta^{\dot{a}} \partial_{\mu} \quad Q_{\dot{a}}=-\partial_{\dot{a}}+i \theta^{a}\left(\sigma_{a \dot{a}}\right)^{\mu} \partial_{\mu} \tag{2}
\end{equation*}
$$

do not satisfies the standard susy relation

$$
\begin{equation*}
\left\{Q_{a}, Q_{b}\right\}=0, \quad\left\{Q_{\dot{a}}, Q_{\dot{b}}\right\}=-4 C^{a b} \sigma_{a \dot{a}}^{\mu} \sigma_{b \dot{b}}^{\nu} \frac{\partial^{2}}{\partial y^{\mu} \partial y^{\nu}} \tag{3}
\end{equation*}
$$

It is named Susy $\mathcal{N}=1 / 2$.

Non-anticomutativity in three spacetime dimensions

A. F. Ferrari, M. Gomes, J. R. Nascimento, A. Yu. Petrov, and A. J. da Silva. Phys. Rev. D, 74:125016, Dec 2006.

$$
\begin{equation*}
\left\{\theta_{a}, \theta_{b}\right\}=\Sigma_{a b} \tag{4}
\end{equation*}
$$

but

$$
\begin{equation*}
\left\{Q_{a}, Q_{b}\right\}=2 P_{a b}-\Sigma^{a b} P_{m a} P_{n b} \tag{5}
\end{equation*}
$$

To preserved the supersymmetry

$$
\begin{equation*}
\tilde{Q}_{a}=Q_{a}+\frac{i}{2} \Sigma^{b c} \partial_{b} P_{c a} \tag{6}
\end{equation*}
$$

The new generators satisfies

$$
\begin{equation*}
\left\{\tilde{Q}_{a}, \tilde{Q}_{b}\right\}=2 P_{a b} \tag{7}
\end{equation*}
$$

Hopf Algebra

The Hopf algebra \mathcal{H} is a vector space

Product

coproduct

$$
\begin{aligned}
\mu: \mathcal{H} \otimes \mathcal{H} & \rightarrow \mathcal{H} \\
a \otimes b & \rightarrow \mu(a \otimes b)=a \cdot b
\end{aligned}
$$

$$
\begin{aligned}
\Delta: \mathcal{H} & \rightarrow \mathcal{H} \otimes \mathcal{H} \\
c & \rightarrow \Delta(h)=\sum_{i}\left(h_{1}\right)_{i} \otimes\left(h_{2}\right)_{i}
\end{aligned}
$$

and exist one antihomomorfism, $S: \mathcal{H} \rightarrow \mathcal{H}$

Antipode

$$
\begin{align*}
S(a \cdot b) & =S(b) \cdot S(a) \tag{8}\\
S(\mathbf{1}) & =\mathbf{1} \tag{9}
\end{align*}
$$

Hopf algebra actions or H-modules

Let (N, m) be \mathcal{H}-Module

$$
\left.\begin{array}{rl}
\alpha: \mathcal{H} & \otimes N
\end{array}\right)=N .
$$

compatibility between action and H-modulo \mathbf{N}

$$
\begin{equation*}
h \triangleright(m(v \otimes w))=m(\Delta(h) \triangleright(v \otimes w)), \quad v, w \in N \tag{11}
\end{equation*}
$$

For a Hopf algebra \mathcal{H}, there is an action on itself

Adjoint action

$$
\begin{align*}
a d: \mathcal{H} \otimes \mathcal{H} & \rightarrow \mathcal{H} \\
(h, x) & \rightarrow a d_{h} x=h \triangleright x=\sum\left(h_{1}\right)_{i} \cdot x \cdot S\left(\left(h_{2}\right)_{i}\right) \tag{12}
\end{align*}
$$

Enveloping algebra $U(\mathfrak{g})$ has a natural Hopf algebra structure, if $\tau_{i} \in \mathfrak{g}$

$$
\begin{align*}
\Delta\left(\tau_{i}\right) & =\tau_{i} \otimes 1+1 \otimes \tau_{i}, & \Delta(1) & =1, \tag{13}\\
S\left(\tau_{i}\right) & =-\tau_{i}, & S(1) & =1, \tag{14}
\end{align*}
$$

The adjoin action of $U(\mathfrak{g})$ is the Lie commutator

Lie bracket

$$
\begin{align*}
& a d_{\tau_{i}} \tau_{j}=\left(\tau_{i}\right)_{1} \cdot \tau_{j} \cdot S\left(\left(\tau_{i}\right)_{2}\right) \\
& \quad=\tau_{i} \cdot \tau_{j}-\tau_{j} \cdot \tau_{i}=\left[\tau_{i}, \tau_{j}\right]=C_{i j}^{k} \tau_{k} \in \mathfrak{g} \quad \forall \tau_{j}, \tau_{i} \in \mathfrak{g} . \tag{15}
\end{align*}
$$

Deformation using Drinfel'd twist

A twist is an element $\mathcal{F} \in \mathcal{H} \otimes \mathcal{H}$

$$
\begin{equation*}
\mathcal{F}=f^{a} \otimes f_{a} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{F}^{-1}=\bar{f}^{a} \otimes \bar{f}_{a} \tag{17}
\end{equation*}
$$

it satisfies
2-cocycle

$$
\begin{equation*}
(\mathbf{1} \otimes \mathcal{F})(i d \otimes \Delta) \mathcal{F}=(\mathcal{F} \otimes \mathbf{1})(\Delta \otimes i d) \mathcal{F} \tag{18}
\end{equation*}
$$

Deformed Lie Algebra

The twist can modified product m of the N and μ of $U(\mathfrak{g})$
Produto \star in N

$$
u \star v=\mu\left(\mathcal{F}^{-1} \triangleright(u \otimes v)\right)=\left(\bar{f}^{a} \triangleright u\right) \cdot\left(\bar{f}_{a} \triangleright v\right) u, v \in N .
$$

Produto \star in $U(\mathfrak{g})$

$$
\begin{equation*}
\tau_{i} \star \tau_{j}=\mu\left(\mathcal{F}^{-1}>\left(\tau_{i} \otimes \tau_{j}\right)\right)=\left(\bar{f}^{a}>\tau_{i}\right) \cdot\left(\bar{f}_{a} \triangleright \tau_{j}\right) \tau_{i}, \tau_{j} \in \mathfrak{g} . \tag{19}
\end{equation*}
$$

These are new algebras and $N_{\star}=(N, \star)$ and $U^{\star}(\mathfrak{g})=(U(\mathfrak{g}), \star)$
But \star-elements in $U^{\star}(\mathfrak{g})$ do not satisfy

$$
\begin{equation*}
\left[\tau_{i}, \tau_{j}\right]=\tau_{i} \star \tau_{j}-\tau_{j} \star \tau_{i} \neq C_{i j}^{k} \tau_{k} \tag{20}
\end{equation*}
$$

P. Aschieri, M. Dimitrijević, F. Meyer and J. Wess. Class and Quantum grav, 23 1883, 2006.

deformed generators

Let $u \in \mathfrak{g}$

$$
\begin{align*}
X_{u} & =\bar{f}^{a} \cdot u \cdot \chi \cdot S\left(\bar{f}_{a}\right) \quad \text { where } \quad \chi=\mu(i d \otimes S) \mathcal{F} . \tag{21}\\
\Delta_{\star}\left(X_{u}\right) & =\mathcal{F}\left(X_{u} \otimes 1+1 \otimes X_{u}\right) \mathcal{F}^{-1} \tag{22}
\end{align*}
$$

Lie Algebra bracket

$$
\begin{equation*}
\left[X_{u} \stackrel{\star}{,} X_{v}\right]=X_{u} \star X_{v}-X_{v} \star X_{u}=X_{[u, v]} \quad \forall u, v \in \mathfrak{g} \tag{23}
\end{equation*}
$$

Deformed Lie algebra actions

$$
\begin{equation*}
X_{u} \triangleright^{\star} n=u \triangleright n \quad \forall u \in \mathfrak{g}, \forall n \in N_{\star} \text { © } \tag{24}
\end{equation*}
$$

Lie Superalgebras

The formulas above (8),(15),(19),(21),(23) can be extended to superalgebras case

Extension to \mathbb{Z}_{2}-Graded Lie

$$
\begin{align*}
S(u \cdot v) & =(-1)^{\kappa(v) \kappa(u)} S(v) \cdot S(u) . \tag{25}\\
u \vee v & =u(v)=(-1)^{\kappa(v) \kappa\left(u_{2}\right)} u_{1} \cdot v \cdot S\left(u_{2}\right) . \tag{26}\\
u \star v & =\sum_{a}(-1)^{\kappa\left(\bar{f}_{a}\right) \kappa(u)} \bar{f}^{a}(u) \cdot \bar{f}_{a}(v) . \tag{27}\\
X_{u} & =\sum_{a}(-1)^{\kappa\left(\bar{f}_{a}\right) \kappa(u)} \bar{f}^{a} \cdot u \cdot \chi \cdot S\left(\bar{f}_{a}\right) . \tag{28}\\
{\left[X_{u}^{\star}, X_{v}\right\} } & =X_{u} \star X_{v}-(-1)^{\kappa(u) \kappa(v)} X_{v} \star X_{u}=X_{[u, v\}} . \tag{29}
\end{align*}
$$

Susy in three dimensions and Hopf Algebra

The Lorentz group act on real two-component spinor $\psi^{a}=\left(\psi^{1}, \psi^{2}\right)$.

superespaço

$$
\begin{equation*}
z=\left(x^{a b}, \theta^{c}\right) \quad \text { where } \quad x^{a b}=\left(\sigma^{\mu}\right)^{a b} x_{\mu} \tag{30}
\end{equation*}
$$

such that

$$
\begin{align*}
{\left[x^{m n}, x^{r s}\right] } & =\left[x^{m n}, \theta^{a}\right]=0, \tag{31}\\
\left\{\theta^{a}, \theta^{b}\right\} & =0 . \tag{32}
\end{align*}
$$

The SUSY properties can be written using the Hopf algebra language

coproduct

$$
\Delta(A)=A \otimes 1+1 \otimes A
$$

adjoint action

$$
\begin{equation*}
A \triangleright B=[A, B\}=A \cdot B-(-1)^{\kappa(B) \kappa(A)} B \cdot A \tag{33}
\end{equation*}
$$

The Hopf algebra is defined by

SUSY generators

$$
\begin{equation*}
\left[P_{a b}, P_{c d}\right]=0, \quad\left\{Q_{a}, Q_{b}\right\}=2 P_{a b}, \quad\left[Q_{a}, P_{c d}\right]=0 \tag{34}
\end{equation*}
$$

supercovariant Derivative

$$
\begin{equation*}
\left[D_{a}, Q_{b}\right\}=0, \quad\left[D_{a}, P_{c d}\right\}=0, \quad\left[D_{a}, D_{b}\right\}=2 P_{c d} \tag{35}
\end{equation*}
$$

this algebra is represented by differential operator

Differential operator

$$
\begin{equation*}
Q_{a}=i\left(\partial_{a}-\theta^{c} i \partial_{c a}\right), \quad P_{a b}=i \partial_{a b}, \quad D_{a}=\partial_{a}+i \theta^{b} \partial_{b a} . \tag{36}
\end{equation*}
$$

and act on superfield algebra N

superfield

$$
\begin{equation*}
\Phi(x, \theta)=A(x)+\theta^{a} \psi_{a}(x)-\theta^{2} F(x) . \tag{37}
\end{equation*}
$$

with product m

$$
\begin{equation*}
m(\Phi \otimes \Psi)=\Phi(z) \cdot \Psi(z) \quad \Phi, \Psi \in N \tag{38}
\end{equation*}
$$

the action is compatible with product m

compatibility

$$
\begin{align*}
A(\Phi \cdot \Psi) & =m(\Delta(A)(\Phi \otimes \Psi)) \\
& =m\left(A(\Phi) \otimes \Psi+(-1)^{\kappa(A) \kappa(\Psi)} \Phi \otimes A(\Psi)\right) \\
& =A(\Phi) \cdot \Psi+(-1)^{\kappa(A) \kappa(\Psi)} \Phi \cdot A(\Psi) . \tag{39}
\end{align*}
$$

SUSY transformation law

tranformation law on the fields

$$
\begin{align*}
\delta_{\xi} \Phi(x, \theta) & \equiv i \xi^{a} Q_{a} \Phi(x, \theta) \tag{40}\\
\delta_{\xi}(\Phi \cdot \Psi) & =\delta_{\xi}(\Phi) \cdot \Psi+\Phi \cdot \delta_{\xi}(\Psi) \tag{41}
\end{align*}
$$

Wess-Zumino Model

The Susy actions is defined by

Wess-Zumino Action

$$
\begin{equation*}
\mathcal{S}=\int d^{3} x d^{2} \theta\left[\frac{1}{2} \Phi D^{2} \Phi+\frac{1}{2} m \Phi^{2}+\frac{1}{6} \lambda \Phi^{3}\right] \tag{42}
\end{equation*}
$$

the Susy action can be rewritten as

Action in Components

$$
\begin{align*}
\mathcal{S} & =\int d^{3} x\left\{\frac{1}{2}\left[F^{2}+A \square A+\psi^{a} i \partial_{a}^{b} \psi_{b}\right]+m\left(\psi^{2}+A F\right)+\right. \\
& \left.+\lambda\left(A \psi^{2}+\frac{1}{2} A^{2} F\right)\right\} \tag{43}
\end{align*}
$$

Susy three dimensions deformation

The algebra \Im to be deformed is

commutation relations \Im.

$$
\begin{align*}
\left\{Q_{a}, Q_{b}\right\} & =2 P_{a b}, \tag{44a}\\
\left\{D_{a}, D_{b}\right\} & =2 P_{c d}, \tag{44b}\\
\left\{D_{a}, \partial_{b}\right\} & =P_{a b}, \tag{44c}\\
\left\{Q_{a}, \partial_{b}\right\} & =-i P_{a b}, \tag{44d}\\
\left\{\partial_{a}, \partial_{b}\right\} & =0, \tag{44e}\\
{\left[P_{a b}, P_{c d}\right] } & =\left[Q_{a}, P_{c d}\right]=\left[\partial_{a}, P_{c d}\right]=\left\{D_{a}, Q_{b}\right\}=0 . \tag{44f}
\end{align*}
$$

its enveloping algebra will be denoted by $\mathcal{U}(\Im)$.

In this case, we use the twist

Twist

$$
\begin{align*}
\mathcal{F} & =e^{\frac{1}{2} C^{a b} \partial_{a} \otimes \partial_{b}} \\
& =1 \otimes 1+\frac{1}{2} C^{a b} \partial_{a} \otimes \partial_{b}-\frac{1}{8} C^{a b} C^{m n} \partial_{a} \partial_{m} \otimes \partial_{b} \partial_{n} \tag{45}
\end{align*}
$$

where we used the relations

$$
\begin{align*}
(A \otimes B) \cdot(C \otimes D) & =(-1)^{\kappa(B) \kappa(C)}(A \cdot C \otimes B \cdot D) \\
\left(\partial_{a}\right)^{3} & =0 \tag{46}
\end{align*}
$$

From this twist we can find the deformed algebra $\mathcal{U}^{\star}(\Im)=(\mathcal{U}(\Im), \star)$

$$
\begin{align*}
\left\{Q_{a} \star Q_{b}\right\} & =Q_{a} \star Q_{b}+Q_{b} \star Q_{a} \\
& =\left\{Q_{a}, Q_{b}\right\}+C^{m n}\left\{\partial_{m}, Q_{a}\right\}\left\{\partial_{n}, Q_{b}\right\}, \\
& =2 P_{a b}-C^{m n} P_{m a} P_{n b} . \tag{47}
\end{align*}
$$

Following the prescription given in the deformation section

Deformed generator

$$
\begin{align*}
X_{Q_{a}} & =\sum_{c}(-1)^{\kappa\left(\bar{f}_{c}\right) \kappa\left(Q_{a}\right)} \bar{f}^{c} Q_{a} S\left(\bar{f}_{c}\right), \\
& =Q_{a}-\frac{1}{2} C^{l m} \partial_{m}\left\{Q_{a}, \partial_{l}\right\}, \\
& =Q_{a}+\frac{i}{2} C^{l m} \partial_{m} P_{a l}, \tag{48}
\end{align*}
$$

the same way

Deformed generators

$$
\begin{align*}
X_{D_{a}} & =D_{a}-\frac{i}{2} C^{l m} \partial_{m} P_{a l}, \tag{49}\\
X_{P_{a b}} & =P_{a b}, \tag{50}\\
X_{\partial_{a}} & =\partial_{a} . \tag{51}
\end{align*}
$$

Deformed coproducts

$$
\begin{align*}
\Delta_{\star}\left(X_{Q_{a}}\right) & =X_{Q_{a}} \otimes 1+1 \otimes X_{Q_{a}}-C^{m n} \partial_{m} \otimes \partial_{n a} \tag{52}\\
\Delta_{\star}\left(X_{D_{a}}\right) & =X_{D_{a}} \otimes 1+1 \otimes X_{D_{a}}-i C^{m n} \partial_{m} \otimes \partial_{n a} \tag{53}\\
\Delta_{\star}\left(X_{P_{a b}}\right) & =X_{P_{a b}} \otimes 1+1 \otimes X_{P_{a b}} \\
\Delta_{\star}\left(X_{\partial_{a}}\right) & =X_{\partial_{a}} \otimes 1+1 \otimes X_{\partial_{a}}
\end{align*}
$$

The algebra \Im^{\star} has the same Susy algebra commutation relation

commutation relation of \Im^{\star}.

$$
\begin{align*}
\left\{X_{Q_{a}} \stackrel{\star}{,} X_{Q_{b}}\right\} & =2 X_{P_{a b}}, \tag{56}\\
\left\{X_{D_{a}} \stackrel{\star}{X_{D_{b}}}\right\} & =2 X_{P_{c d}}, \tag{57}\\
\left\{X_{D_{a}} \stackrel{\star}{*} X_{\partial_{b}}\right\} & =X_{P_{a b}}, \tag{58}\\
\left\{X_{Q_{a}} \stackrel{\star}{,} X_{\partial_{b}}\right\} & =-i X_{P_{a b}}, \tag{59}\\
\left\{X_{\partial_{a}} \stackrel{\star}{D_{\partial_{b}}}\right\} & =0, \tag{60}\\
{\left[X_{P_{a b}} \stackrel{\star}{,} X_{P_{c d}}\right] } & =\left[X_{Q_{a}} \stackrel{\star}{,} X_{P_{c d}}\right]=\left[X_{\partial_{a}} \stackrel{\star}{,} X_{P_{c d}}\right]=\left\{X_{Q_{a}} \stackrel{\star}{,} X_{D_{b}}\right\}=0
\end{align*}
$$

(61)

The product \star in not commutative on the fields

$$
\begin{align*}
\Phi(z) \star \Psi(z) & =m^{\mathcal{F}}(\Phi \otimes \Psi)=m\left(\mathcal{F}^{-1} \triangleright(\Phi \otimes \Psi)\right) \\
& =(-1)^{\kappa(\Phi) \kappa\left(\bar{f}_{a}\right)}\left(\bar{f}^{a} \triangleright \Phi\right) \cdot\left(\bar{f}_{a} \triangleright \Psi\right) \\
& =\Phi(z) \cdot \Psi(z)-\frac{1}{2}(-1)^{\kappa(\Phi)} C^{a b}\left(\partial_{a} \Phi(z)\right) \cdot\left(\partial_{b} \Psi(z)\right)- \\
& -\frac{1}{8} C^{a b} C^{m n}\left(\partial_{a} \partial_{m} \Phi(z)\right) \cdot\left(\partial_{b} \partial_{n} \Psi(z)\right) . \tag{62}
\end{align*}
$$

deformed Superspace

$$
\begin{aligned}
{\left[x^{m n} \stackrel{\star}{*} x^{r s}\right] } & =\left[x^{m n} \stackrel{\star}{,} \theta^{a}\right]=0, \\
\left\{\theta^{a} \stackrel{\star}{,} \theta^{b}\right\} & =C^{a b} .
\end{aligned}
$$

by construction the algebra \Im^{\star} is compatible wit star product \star above

$$
\begin{equation*}
X_{A} \triangleright(\Phi(z) \star \Psi(z))=m^{\mathcal{F}}\left(\Delta_{\star}\left(X_{A}\right) \triangleright(\Phi \otimes \Psi)\right) . \tag{63}
\end{equation*}
$$

deformed Susy transformation

$$
\begin{align*}
\delta_{\xi}^{\star} \Phi(x, \theta) & =i \xi^{a} X_{Q_{a}} \triangleright \Phi(x, \theta) \\
& =i \xi^{a} Q_{a} \Phi(x, \theta) \tag{64}
\end{align*}
$$

Deformed Susy transformation law on field product

$$
\begin{equation*}
\delta_{\xi}^{\star}(\Phi \star \Psi)=\left(\delta_{\xi}^{\star} \Phi\right) \star \Psi+\Phi \star\left(\delta_{\xi}^{\star} \Psi\right)+C^{m n} \partial_{m} \Phi \star \xi^{a} \partial_{a n} \Psi . \tag{65}
\end{equation*}
$$

The star product \star can be rewritten as

$$
\Phi \star \Psi=\Phi(z) \cdot \Psi(z)-\frac{1}{2}(-1)^{\kappa(\Phi)} C^{a b} \partial_{a}\left(\Phi \cdot \partial_{b} \Psi\right)-\frac{1}{8} C^{a b} C^{m n} \partial_{a} \partial_{m}\left(\Phi \cdot \partial_{b} \partial_{n} \Psi\right) .
$$

therefore

$$
\begin{equation*}
\int d^{3} x d^{2} \theta \Phi \star \Psi=\int d^{3} x d^{2} \theta \Phi \cdot \Psi . \tag{66}
\end{equation*}
$$

Then

there are not modifications

$$
\begin{equation*}
\mathcal{S}_{\text {cin }}^{\star}+\mathcal{S}_{m}^{\star}=-\frac{1}{4} \int d^{3} x d^{2} \theta\left(D^{b} \Phi\right) \cdot\left(D_{b} \Phi\right)+\frac{1}{2} \int d^{3} x d^{2} \theta m \Phi \cdot \Phi . \tag{67}
\end{equation*}
$$

The deformation is not trivial to interaction terms

$$
\begin{align*}
\mathcal{S}_{I}^{\star} & =\alpha \int d^{3} x d^{2} \theta(\Phi)_{\star}^{n} \tag{68}\\
& =\alpha \int d^{3} x d^{2} \theta \underbrace{\Phi \star \cdots \cdots \star \Phi}_{n-\text { vezes }} . \tag{69}
\end{align*}
$$

Cubic Interaction

$$
\begin{align*}
\mathcal{S}_{I}^{\star} & =\frac{\lambda}{6} \int d^{3} x d^{2} \theta(\Phi)_{\star}^{3} \tag{70}\\
& =\frac{\lambda}{6} \int d^{3} x d^{2} \theta \Phi \star \Phi \star \Phi . \tag{71}
\end{align*}
$$

Using the definition of \star product

$$
\begin{align*}
\mathcal{S}_{I}^{\star} & =\frac{\lambda}{6} \int d^{3} x d^{2} \theta\left(\Phi^{3}-\frac{1}{8} C^{l m} C^{n k} \Phi \partial_{l} \partial_{n} \Phi \partial_{m} \partial_{k} \Phi\right), \tag{72}\\
& =\frac{\lambda}{6} \int d^{3} x d^{2} \theta \Phi^{3}+\frac{\lambda}{14} \int d^{3} x \operatorname{det} C F^{3} \tag{73}
\end{align*}
$$

therefore
N Seiberg. Journal of High Energy Physics, 6:10, June 2003.

Total action

$$
\begin{align*}
\mathcal{S}^{\star} & =\mathcal{S}_{c i n}^{\star}+\mathcal{S}_{m}^{\star}+\mathcal{S}_{I}^{\star} \tag{74}\\
& =\mathcal{S}+\frac{\lambda}{14} \int d^{3} x \operatorname{det}(C) F^{3} \tag{75}
\end{align*}
$$

Conclusion

- Is possible to define one twist using Grassmannian derivatives.
- Find us the same deformed Susy generators of the literature the consistent way using the Hopf Algebra.
- Show us that the deformed algebra satisfies the same Susy commutation relations.
- The modification in the action only can be obtained of the interaction terms.

Perspectives

The perspectives are study the quantum correction to two loops and study the renormalization group equation for the non anticommutation parameter $C^{a b}$.

Thank for the Financial Support to

Thanks for You Atention

Questions?

Quantum correction

The action can be expressed in superfield terms

Total action

$$
\begin{equation*}
\mathcal{S}^{\star}=\int d^{3} x d^{2} \theta\left[\frac{1}{2} \Phi D^{2} \Phi+\frac{1}{2} m \Phi^{2}+\frac{1}{6} \lambda \Phi^{3}+\frac{\lambda}{14} U\left(D^{2} \Phi\right)^{3}\right], \tag{76}
\end{equation*}
$$

where U is called the spurion field

Spurion

$$
\begin{equation*}
U=\operatorname{det}(C) \theta^{2} \tag{77}
\end{equation*}
$$

M. T. Grisaru, S. Penati, A. Romagnoni. Journal of High Energy Physics. 0308 (2003) 003

Using the quantum-background splitting $\Phi \rightarrow \Phi+\Phi_{q}$

Extra vertices from U

The propagator is

Propagator

$$
\begin{equation*}
\langle\Phi \Phi\rangle=\frac{D^{2}-m}{k^{2}+m^{2}} \delta\left(\theta-\theta^{\prime}\right) \tag{78}
\end{equation*}
$$

One Loop

The first vertex, we have additional diagrams

One loop diagrams

To process of high energy we can set that external momentums taking to zero

The kind of integral that appear in these diagrams are

Diagram's integral

$$
\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{\left(k^{2}+m^{2}\right)}, \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\left(k^{2}\right)^{2}}{\left(k^{2}+m^{2}\right)^{3}}, \ldots, \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\left(k^{2}\right)^{a}}{\left(k^{2}+m^{2}\right)^{b}}
$$

Using

Dimensional regularization

$$
\int \frac{d^{n} k}{(2 \pi)^{n}} \frac{\left(k^{2}\right)^{a}}{\left(k^{2}+N\right)^{b}}=i^{n+3} \frac{\Gamma\left(b-a-\frac{1}{2} n\right) \Gamma\left(a+\frac{1}{2} n\right)}{\Gamma(b) \Gamma\left(\frac{1}{2} n\right)} N^{-\left(b-a-\frac{1}{2} n\right)}
$$

The integral are finite.

