The 22nd International Conference on Supersymmetry and Unification of Fundamental Interactions 22 July 2014, Manchester, England

Searches for long-lived particles in ATLAS

Università degli Studi di Genova & INFN

Elisa Guido

(on behalf of the ATLAS Collaboration)

Outline

- Long-lived particles signatures
- Highlights of <u>ATLAS searches with</u> <u>8 TeV (or 7+8 TeV) data</u>:
 - Displaced vertices ATLAS-CONF-2013-092
 - **Disappearing tracks** <u>PRD 88, 112006 (2013)</u>
 - Heavy long-lived sleptons ATLAS-CONF-2013-58
 - Long-lived stopped R-hadrons PRD 88, 112003 (2013)
 - Metastable gluinos ATLAS-CONF-2014-037
- Summary

Long-lived particles

- <u>Long-lived particles</u> (LLPs) predicted by a number of BSM theories:
 - SUSY models (split SUSY, AMSB, GMSB, RPV scenarios...)
 - non-SUSY models (Hidden Valley, Higgs portal, monopoles, Q-balls, quirks...)
- This talk is focused on LLP searches within SUSY models only
- LLPs can be <u>observable at the LHC</u>: interesting chapter among the SUSY searches
- Their lifetimes can originate from:
 - nearly conserved symmetry
 - low couplings between the particle and its final state
 - mass degeneracy between the particle and its final state
- Different lifetimes —> <u>different signatures in the detector</u>

Examples of LLPs signatures at ATLAS

- ATLAS searches are extensive and exploit at best the different possible signatures of the LLPs, and the peculiar features of each sub-detector
- Displaced vertices —> secondary vertex (RPV)
- Disappearing tracks —> high-p_T isolated tracks, with few associated hits in the outer tracking volume (AMSB)
- **R-hadrons, sleptons** —> low β, large dE/dx (split SUSY, GMSB, LeptoSUSY)
- Non-pointing photons —> not associated to primary vertex (GMSB)
- Long-lived stopped R-hadrons
 —> out-of-time decay (split SUSY)
- Metastable gluinos —> decay within the detector with an observable decay length (split SUSY)

SUSY14, 22 July 2014, Manchester

- Small RPV couplings —> significant neutralino lifetime. $\tilde{\chi}_{1^0}$ —> μ + many charged tracks originating from a displaced vertex (DV). Lifetimes O(ps-ns).
- Selection:
 - high-p_T μ not coming from primary vertex (|d₀|>1.5 mm)
 - high-quality tracks: <u>dedicated re-tracking</u> on Inner Detector hits not used for the standard tracking. Not coming from primary vertex $(|\underline{d_0}| > 2 \text{ mm})$
 - DV reconstructed from more than 4 selected tracks, and with mass > 10 GeV
 - vertices vetoed in detector material layers
- Signal efficiency (dominated by reconstruction) strongly depends on:
 - neutralino mass (heavier —> larger number of tracks from DV)
 - neutralino boost (more boosted —> more tracks fail $|d_0| > 2$ mm)
 - neutralino lifetime
- Backgrounds (expected 0.02±0.02 events):
 - real hadronic interactions with gas outside the beam pipe
 - real or fake random combinations of tracks

Observation of zero candidates in data -> UL of 0.14 fb on the visible cross section at 95% CI

8 TeV data

SUSY14, 22 July 2014, Manchester

PRD 88, 112006 (2013)

Disappearing tracks

- In AMSB models where the lightest particle is the neutral wino, the mass degeneracy between neutralino $\tilde{\chi}_1^0$ and charginos $\tilde{\chi}_1^\pm$ results in <u>a considerable lifetime</u> (~0.2 ns if $\Delta m(\tilde{\chi}_1^\pm)$ ~160 MeV)
- Some charginos could have decay lengths of ~10 cm
- When decaying in the sensitive volume, expected to be observed as high-p_T disappearing tracks
 - no more than a few associated hits in the outer tracker region
 - π^{\pm} not reconstructed (softly emitted)
- Makes use of <u>a dedicated topological trigger</u>:
 - at least 1 high-p_T jet + large transverse missing energy (MET) + Δφ^{jet,MET}>1 (the smallest azimuthal separation in case of multiple high-p_T jets)
 - suppress SM multijets (peaks at Δφ^{jet,MET}~0, since MET comes from mis-measured jets
 - —> aligned with high-p_T jets)

Badly mismeasured in p_T due to a wrong combination of space-points

High- p_{T} charged hadron interacting with ID material

Lepton failing to satisfy identification criteria due to large bremsstrahlung or scattering

SCT

Pixel

TRT

- Makes also use of a <u>dedicated tracking</u>, using Pixelonly seeds in order to enhance the short track reconstruction efficiency
- Backgrounds (estimated from data):
 - interacting hadrons

E. Guido

- non-identified prompt leptons
- mis-measured low-p_T charged tracks
- Looking for an excess in the track p_T spectrum —

- No significant excess observed
- Limits in terms either of chargino lifetime (shown here), or of charginoneutralino mass splitting

Excluded charginos with m < 270 GeV(and $\tau \sim 0.2 \text{ ns}$) at 95% CL

ATLAS-CONF-2013-58

Heavy long-lived sleptons

- In GMSB models with stau as the next to lightest SUSY particle, and the scale factor for the gravitino chosen such that stau does not decay in the detector
- S<u>low-moving particles</u> —> <u>time-of-flight</u> from calorimeters and muon detectors (β) and <u>specific ionization loss</u> from Pixel (βy) allow mass measurement
 ×10³
 - good detector calibrations are crucial

E. Guido

• consistency of the observables between and within the different sub-detectors

- Background: high- $p_T \mu$ with mis-measured β and/or large ionization. Data-driven estimate.
 - No excess above background expectations

PRD 88, 112003 (2013)

Long-lived stopped R-hadrons

- <u>R-hadrons</u> are bound states composed of a squark or a gluino + light SM quarks and gluons (split SUSY models)
- R-hadrons produced in collisions may stop in the calorimeter, decaying (to a neutralino + hadronic jets) at some later time not associated with colliding bunches
- Look for energetic jets
- Small background from cosmics, noise and beam halo interactions
- <u>Complementary to long-lived searches</u> (less sensitive to initial $\beta <<1$)
- Relies primarily on calorimetric measurements
 —> sensitive to charge-flipped R-hadrons

$$\epsilon = \epsilon_{stop} \times \epsilon_T(\tau) \times \epsilon_{reco}$$

stopping fraction

timing acceptance (probability that the decay occurs in an empty crossing)

7+8 TeV data

- Events selected in empty bunches
- Large calorimetric activity: leading jet energy > 100 (300) GeV
- Events with muon segments reconstructed vetoed (rejects cosmics)
- Events with spike-like signals in the calorimeter vetoed (rejects random noise & beam halo)

Leading Jet Energy [GeV]

- Background estimated using low-luminosity data (cosmics) and unpaired crossings (beam halo)
 Image: ATLAS
- No excess observed

For $\tau = 10^{-6}$ - 10³s and m($\tilde{\chi}^0$)=100 GeV, at 95% CL: m(\tilde{g})>832 GeV

- Limits with different R-hadron decays and interaction models (—> different stopping fractions) also given
- Limits for stop and sbottom also given

8 TeV data

Metastable gluinos

- Previous searches for gluinos assumed either prompt decays or very long lifetimes (to escape or stop inside the detector)
- ATLAS searches for promptly decaying gluinos are also sensitive to intermediate lifetimes not considered so far —> <u>complementary to other ATLAS long-lived searches</u>
- Analyses re-interpreted:
 - b-jets + MET (*displaced jets from metastable gluinos identified as b-jets*)
 —>"2-6 jets" analysis [arXiv:1405.7875]: <u>19 signal regions based on [7,8,9,≥10] jets</u>, [0,1,≥2] b-jets and MET
 - high-energy jets + MET (*metastable gluino decaying before the calorimeters*)
 —> "7-10 jets" analysis [JHEP 1310, 130 (2013)]: <u>15 signal regions based on</u> [2,3,4,5,≥6] jets and MET
- Two decay models considered:

 $\tilde{g}
ightarrow q \bar{q} \tilde{\chi}_1^0, g \tilde{\chi}_1^0$

E. Guido

(with $q \neq t$) if squarks masses are degenerate

- "7-10 jets" analysis has no sensitivity to $q\bar{q}/g$ decays (this model leads to a relatively small jet multiplicity)
- Both analyses have a good sensitivity to tt decays
- Jet multiplicity (and therefore sensitivity) decreases with lifetime
- Limits as a function of the gluino lifetime on:
 - neutralino mass for gluino masses = 600, 800 GeV
 - gluino mass for neutralino mass = 100 GeV, or in a compressed scenario (close to gluino mass)

 ^{g→ tt} x̃₁⁰ m(x̃₁⁰)=100 GeV

- Extensive searches for long-lived particles in ATLAS
- Peculiar capabilities of each sub-detector are exploited, looking for different signatures
- Dedicated reconstruction techniques developed for some of these searches
- A set of new updates on 8 TeV (and 7+8 TeV) data has been shown
- No evidence of excess above expected backgrounds found so far
- More results in the pipeline: stay tuned!

PRD 88, 012001 (2013)

Non-pointing photons

- In the context of GMSB models, neutralino may decay to a photon + a gravitino with a lifetime in the range 250 ps - 100 ns
- $\tilde{\chi}_1^0 \to \tilde{G}\gamma$

--- Z→ ee (2011 Data)

- Exploits EM calorimeter: precise measurements of the flight direction (pointing measurement) and of the time-of-flight (timing measureament) of photons
- Search for MET (from the escaping gravitino) along with pairs of high-energy photons (E_T>75 GeV) not pointing back to primary vertex
 - crosscheck with any evidence of late photon detection

ATLAS

 $\int Ldt = 4.8 \text{ fb}^{-1}$

Data 2011, \s = 7 TeV

- Backgrounds: prompt photons, electrons or jets mis-identified as photons
 - prompt photons modeled on Z—>e⁺e⁻ events (similar pointing and timing resolutions)
 - jet background estimated from a data control sample with low MET (contains jets with properties as in the signal region, but signal free)
- No excess over SM expectation found
- Exclusion limits in the plane of neutralino lifetime $\tau(\tilde{\chi}^{0}_{1})$ vs. the effective scale of SUSY breaking Λ :
 - $0.25 < \tau(\tilde{\chi}_{1}^{0}) < 50.7$ (2.7) ns excluded for $\Lambda = 70$ (160) TeV

