Future Prospects for Stau in Higgs Coupling to Di-photon

Teppei Kitahara University of Tokyo

SUSY2014: Higgs Phenomenology Session,

July 21, 2014, Manchester, England

Based on

T. K, JHEP 1211 (2012) 021 [arXiv:1208.4792]

T. K, T. Yoshinaga, JHEP 1305 (2013) 035 [arXiv:1303.0461]

M. Endo, T. K, T. Yoshinaga, JHEP 1404 (2014) 139 [arXiv:1401.3748]

Main Conclusions

If the excess of κ_γ (= deviation of the Higgs to diphoton coupling) is measured to larger than 4% (= 2σ deviation) at the early stage of ILC, the lightest stau is predicted to be lighter than 200 GeV in the MSSM.

• If the excess of κ_{γ} and the stau mixing angle are measured at the early stage of ILC, it is possible to predict the heaviest stau mass, even when it is not yet discovering.

Higgs Oblique corrections

- "Higgs Oblique corrections", which means loop-induced Higgs couplings (Higgs to digluon / diphoton / Z+photon), can also predict and constrain the new physics indirectly.
- Advantage: Since these loop-induced Higgs couplings do not emerge at the tree level and induced at radiative level, these diagrams are easily influenced by new physics.

Status of the Higgs couplings

July 21, 2014 SUSY2014: Higgs Phenomenology Session

Status of the Higgs couplings

July 21, 2014 SUSY2014: Higgs Phenomenology Session

Sensitivities of the Future colliders

[M. E. Peskin, 1312.4974 (2013)]

$\kappa_A =$	g_{hAA}	$-1 \perp \delta \kappa$
	$\overline{g_{hAA}(\mathrm{SM})}$	$-1 \pm 0\kappa_A,$

LHC Run2

High Lumi

-LHC

future Systematic error

=

	Optimistic e	stimate	Current Values		
$300~{\rm fb}^{-1}$	¹ Scenario 2		Scenario 1		
	7-param	9-param	7-param	9-param	
γ	5.7	4.3	9.0	7.3	
W	4.2	3.5	5.4	4.6	
Z	5.7	5.0	8.5	6.6	
g	4.9	4.1	6.9	6.3	
b	11.4	7.6	14.9	10.2	
t	17.3	17.3	20.5	20.6	
au	5.8	4.4	9.5	7.7	
invis.		4.6		6.1	
3000 fb	⁻¹ Scenario 2		Scenario 1		
	7-param	9-param	7-param	9-param	
γ	2.9	2.4	6.5	5.3	
W	1.6	1.2	3.3	2.3	
Z	2.8	2.2	6.3	4.3	
g	2.3	2.0	4.8	4.4	
b	4.2	2.9	8.5	6.0	
t	5.7	5.6	12.9	12.8	
au	2.7	2.2	6.5	5.1	
			1		
invis.	_	1.5		3.2	

 $\delta \kappa_{\gamma} \sim 4 - 9\%$

 $\delta\kappa_{\gamma}\sim 3-6\%$

The error is dominated by systematic uncertainties (QCD theoretical error)

Sensitivities of the Future colliders

• The ILC sensitivity of Higgs to diphoton coupling is weaker than LHC one because the statistical error is larger than LHC.

	$\kappa_A = \frac{g_{hAA}}{g_{hAA}(SM)} = 1 + \delta \kappa_A,$						
	250	500	$500 \mathrm{up}$	1000	1000up		
W	4.6	0.46	0.22	0.19	0.15		
Z	0.78	0.50	0.23	0.22	0.22		
g	6.1	2.0	0.96	0.79	0.60		
γ	18.8	8.6	4.0	2.9	1.9		
\boldsymbol{b}	4.7	0.97	0.46	0.39	0.32		
c	6.4	2.6	1.2	0.98	0.72		
au	5.2	2.0	0.89	0.79	0.65		
invis.	0.54	0.52	0.22	0.22	0.21		
	·						

ILC

[M. E. Peskin, 1312.4974 (2013)]

Joint Analysis [M. E. Peskin, 1312.4974 (2013)]

- $Br(h \rightarrow \gamma \gamma)/Br(h \rightarrow ZZ^*)$ will be measured very precisely at HL-LHC because its theoretical error is alleviated.
- Higgs to ZZ* coupling will be measured very precisely at ILC because ILC can measure associated Higgs production cross section (e+e- -> Z* -> Zh).
- If the measurement of $Br(h \rightarrow \gamma \gamma)/Br(h \rightarrow ZZ^*)$ at HL-LHC is combined with the measurements of the Higgs to ZZ* coupling at ILC, κ_{γ} can be measured precisely.

Joint Analysis [M. E. Peskin, 1312.4974 (2013)]

 $Br(h \rightarrow \gamma \gamma) / P_{r}(h \rightarrow 77^{*})$ will be measured very precisely at ${\color{black}\bullet}$ $\delta \kappa_{\gamma} [\%]$ HL-LHC k Higgs to ely at ILC CMS-1 7% CMS-2 tion cross because ILC 6% section (e ILC + LHC BR 5% 4% ratio HL-LHC is If the mea 3% combined ZZ* coupling 2% at ILC, κ 1% 250 500 500up 1000 1000up CMS

The uncertainty can be reduced to be $\,\delta\kappa_\gamma\sim 1-2\%$

Joint Analysis [M. E. Peskin, 1312.4974 (2013)]

We consider that how the accuracy of κ_{γ} predicts or constrains the new physics indirectly.

because l section (e

If the mean of th

The uncertainty can be reduced to be $\,\delta\kappa_\gamma\sim 1-2\%$

6

e

Dark Matter

No Hierarchy problem

stop/sbottom..... We assume the colored particles are heavy (heavier than O(1 TeV))

stau....This talk

chargino.... almost parameter regions chargino contributions are smaller than staus.

[M.Endo, **TK**, T.Yoshinaga, JHEP 1404 139 (2014)]

Stau Contributions to κ_{γ}

• I briefly review the stau contributions to κ_{γ} and the vacuum meta-stability condition.

$$M_{\tilde{\tau}}^2 = \begin{pmatrix} m_{\tilde{\tau}LL}^2 & m_{\tilde{\tau}LR}^2 \\ m_{\tilde{\tau}LR}^2 & m_{\tilde{\tau}RR}^2 \end{pmatrix},$$

$$m_{\tilde{\tau}LL,RR}^2 = \tilde{m}_{\tilde{\tau}L,R}^2 + m_{\tau}^2 + D_{\tilde{\tau}L,R}$$

$$D_{\tilde{\tau}} = m_Z^2 \cos 2\beta (I_{\tau}^3 - Q_{\tau} \sin^2 \theta_W)$$

$$m_{\tilde{\tau}LR}^2 = m_{\tau} (A_{\tau} - \mu_H \tan \beta)$$

$$U_{\tilde{\tau}} \mathcal{M}_{\tilde{\tau}}^2 U_{\tilde{\tau}}^{\dagger} = \operatorname{diag}(m_{\tilde{\tau}_1}^2, m_{\tilde{\tau}_2}^2)$$
$$U_{\tilde{\tau}} = \begin{pmatrix} \cos \theta_{\tilde{\tau}} & \sin \theta_{\tilde{\tau}} \\ -\sin \theta_{\tilde{\tau}} & \cos \theta_{\tilde{\tau}} \end{pmatrix} , \quad m_{\tilde{\tau}LR}^2 = \frac{1}{2} (m_{\tilde{\tau}_1}^2 - m_{\tilde{\tau}_2}^2) \sin 2\theta_{\tilde{\tau}}$$

Staus are characterized by only **three parameters**, $m_{ ilde{ au}_1}, \ m_{ ilde{ au}_2}, \ heta_{ ilde{ au}}$

Stau Contributions to κ_{γ}

• The Higgs to diphoton decay rate

$$\mathcal{M}_{\gamma\gamma}(SM) = \frac{g_{hWW}}{m_W^2} A_1^h(x_W) + \frac{2g_{htt}}{m_t} \frac{4}{3} A_{1/2}^h(x_t)$$

• The Higgs to diphoton coupling

$$\kappa_{\gamma} = \frac{|\mathcal{M}_{\gamma\gamma}(\mathrm{SM}) + \mathcal{M}_{\gamma\gamma}(\tilde{\tau})|}{|\mathcal{M}_{\gamma\gamma}(\mathrm{SM})|}$$
$$\delta\kappa_{\gamma} = \sum_{i=1,2} 0.03 \frac{m_{\tau} \mu_H \tan \beta}{m_{\tilde{\tau}_i}^2} \sin 2\theta_{\tilde{\tau}}$$
$$\sim \mathcal{O}(10\%)$$

always Constructive contribution to the SM

In the MSSM, the light staus with large stau mixing contribute to the Higgs to diphoton coupling at O(10%). [Carena, Gori, Shah and Wagner[1112.3336]]

Vacuum Stability

July 21, 2014 SUSY2014: Higgs Phenomenology Session

Teppei KITAHARA – Univ. of Tokyo 10/14

Stau Contributions to κ_{γ}

July 21, 2014 SUSY2014: Higgs Phenomenology Session Te

Teppei KITAHARA – Univ. of Tokyo 11/14

Stau Contributions to κ_{γ}

July 21, 2014 SUSY2014: Higgs Phenomenology Session Te

Teppei KITAHARA – Univ. of Tokyo 11/14

Upper bound on the lightest stau mass

The left-right mixing of staus is maximized at each points under vacuum stability conditions.

[M.Endo, TK, T.Yoshinaga, JHEP 1404 139 (2014)]

July 21, 2014 SUSY2014: Higgs Phenomenology Session Teppei KITAHARA – Univ. of Tokyo 12/14

July 21, 2014 SUSY2014: Higgs Phenomenology Session Teppei KITAHARA – Univ. of Tokyo 12/14

Predict the heaviest stau mass

[Bechtle, Berggren, List, Schade, Stempel, Phys.Rev. D82 055016 (2010)] [M.Endo, **TK**, T.Yoshinaga, JHEP 1404 139 (2014)]

July 21, 2014 SUSY2014: Higgs Phenomenology Session Teppei KITAHARA – Univ. of Tokyo 13/14

Conclusions

- The coupling κ_{γ} will be measured at percent levels by the joint analysis of HL-LHC and ILC, and they enable us to probe the stau properties (mass, mixing) indirectly.
- If the excess of κ_{γ} is measured to larger than 4% at the early stage of ILC, the lightest stau is predicted to be lighter than 200 GeV.

• If the excess of κ_{γ} and the stau mixing angle are measured at the early stage of ILC, it is possible to predict the heaviest stau mass, even when it is not yet discovering.

Teppei KITAHARA kitahara@hep-th.phys.s.u-tokyo.ac.jp

Backup Slide

July 21, 2014 SUSY2014: Higgs Phenomenology Session Teppei KITAHARA – Univ. of Tokyo /14

Chargino Contributions to κ_{γ}

$$\mathcal{M}_{\gamma\gamma}(\tilde{\chi}^{\pm}) = \frac{4}{3} \frac{g^2 v \sin 2\beta}{M_2 \mu_H - \frac{1}{4} g^2 v^2 \sin 2\beta}.$$

[M.Endo, **TK**, T.Yoshinaga, JHEP 1404 139 (2014)]

