Multiphoton signatures of supersymmetry

Christoffer Petersson

Université Libre de Bruxelles International Solvay Institutes Chalmers University of Technology

Multiphoton signatures of supersymmetry

Christoffer Petersson

Université Libre de Bruxelles International Solvay Institutes Chalmers University of Technology

Based on: G. Ferretti, A. Mariotti, K. Mawatari, C.P. JHEP 1404 (2014) 126 (arXiv:1312.1698)

Motivations

• So far the LHC has not seen any clear signal of BSM physics

• However, so far the LHC has mainly probed minimal BSM scenarios

Motivations

• So far the LHC has not seen any clear signal of BSM physics

• However, so far the LHC has mainly probed minimal BSM scenarios

- This motivates: Non-minimal models
 - Non-standard signatures at the LHC
 - New LHC searches and strategies

Plan of the talk and results

- General remarks on SUSY breaking and GMSB
- Exercise: Study how the standard phenomenology of GMSB is modified if SUSY is broken in more than one hidden sector.
- Results: Softer final state spectrum
 - Existing LHC searches are poorly sensitive
 - Additional photons in the final states
 - These models can be probed with new, dedicated, searches

f is the VEV that breaks supersymmetry spontaneously (cf. $\langle H \rangle = v$ that breaks EW symmetry spontaneously)

- In GMSB, the LSP is the nearly massless gravitino
- Assuming R-parity, the NLSP decays to its SM partner and the gravitino
- The Bino and the right-handed sleptons are often among the lightest SM superpartners

Question: What if SUSY is broken in more than one hidden sector? (cf. EW symmetry is broken both by the Higgs VEV and the QCD quark condensate)

Previous studies of multiple hidden sector models in the context of gravity mediation: [Benakli,Moura] [Cheung,Nomura,Thaler] [Craig,March-Russell,McCullough] [Izawa,Nakai,Shimomura] [Thaler,Thomas] [Cheung,D'Eramo,Thaler] [Cheng,Huang,Low,Menon][Bertolini,Rehermann,Thaler]

Multiple hidden sector models in the context of gauge mediation: [Argurio,Komargodski,Mariotti] [Argurio,De Causmaecker,Ferretti,Mariotti,Mawatari,Takaesu] [Liu,Wang,Yang]

Multiple hidden sectors

Multiple hidden sectors

• The n additional neutral fermions $\tilde{\eta}_i$ extend the 4 by 4 MSSM neutralino mass matrix to an (4+n) by (4+n) matrix

• The true goldstino \tilde{G} (eaten by the gravitino) is given by one linear combination $\tilde{G} = (f_1 \tilde{\eta}_1 + \cdots + f_n \tilde{\eta}_n)/f$

• All the other n-1 linear combinations $\tilde{G}', \tilde{G}'', \dots$ are pseudo-goldstini, and they acquire masses at the tree and radiative level

Multiple hidden sectors

 If the Lightest MSSM SUSY Particle is a Bino-like neutralino, it dominantly decays to a photon and the heaviest pseudo-goldstini

 If there are more than 2 hidden sectors, the pseudo-goldstino can decay to a photon and a lighter pseudo-goldstino

Simplified model of GMSB with goldstini

3 Hidden sectors

- CMS diphoton+MET search, CMS-PAS-SUS-12-018 (jet requirement)
- ATLAS lepton+photon+MET search, ATLAS-CONF-2012-144 (tight cuts)
- Dileptons+MET searches have too large backgrounds
- The most relevant search is the inclusive ATLAS diphoton+MET search, [arXiv:1209.0753 [hep-ex]]
- Updated diphoton+MET search in ATLAS-CONF-2014-001 (however, less sensitive due to tighter cuts)

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]]

 $p_T^{\gamma_{1,2}} > 50 \,\text{GeV}$, MET > 125 GeV

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]]

Christoffer Petersson, ULB

• The most relevant search is the inclusive ATLAS diphoton+MET search [arXiv:1209.0753 [hep-ex]]

Proposal for new LHC search

Number of signal events with 20 fb⁻¹ of data at LHC-8TeV

final state	MET	150-100-50	150-100-0	150-50-0	100-50-0
3γ	(0-50)	32	25	39	43
	(50-100)	34	37	32	27
	(100-∞)	11	19	14	9
final state	MET	150-100-50	150-100-0	150-50-0	100-50-0
$\begin{array}{c} \text{final state} \\ 4\gamma \end{array}$	MET (0-50)	150-100-50 16	150-100-0 13	150-50-0 19	100-50-0 18
final state 4γ	MET (0-50) (50-100)	150-100-50 16 15	150-100-0 13 19	150-50-0 19 13	100-50-0 18 9

 M_{ℓ_R} M_{χ} $M_{G''}$ $M_{G'}$

Christoffer Petersson, ULB

Proposal for new LHC search

Number of signal events with 20 fb⁻¹ of data at LHC-8TeV

							-				
	final state	MET	150-100-50	150-100-0	150-50-0	100-50-0					
	3γ	(0-50)	32	25	39	43					
		(50-100)	34	37	32	27					
		(100 - ∞)	11	19	14	9					
	final state	MET	150-100-50	150-100-0	150-50-0	100-50-0					
	4γ	(0-50)	16	13	19	18					
		(50-100)	15	19	13	9					
		$(100-\infty)$	3.4	8.3	5.6	3.0					
$\tilde{\ell}_{R}^{+}$ $\tilde{\ell}$											
	red for (3)	$(4)\gamma + N$	ats) alread	y with the	> 0.4 2	00 150 10	0 0				
A sear	chrong	2	00 150 50) 0							
(or ve	ry such	2	00 100 50) 0							

Christoffer Petersson, ULB

Conclusions

In GMSB models with multiple hidden sectors, the presence of pseudo-goldstini implies final state spectra which are soft but involve additional photons.

Focused on slepton pair production, one could consider other production modes

Thank you!