Searches for gluino, stop and sbottom production in channels with b-jets and MET in ATLAS

Maria Fiascaris (University of Chicago) SUSY 2014 - 21/07/2014

......

Supersymmetry and 3rd generation

Supersymmetry adds a new fundamental symmetry relating fermions and bosons \rightarrow more than doubles the particle spectrum w.r.t. the Standard Model

SUSY and the Gauge hierarchy problem

fermions and boson loops contribute with different signs to the Higgs radiative corrections

For **natural SUSY** (low level of fine-tuning):

- light higgsinos
- Ight stop and sbottoms (< I TeV)</p>
- Iight gluinos (< I-2 TeV)</p>

Strong physics case for third generation squarks

Supersymmetry and 3rd generation

Top and bottom squarks (assuming RPC) can be produced at the LHC via:

- gluino-mediated production
 - $(\tilde{g}\tilde{g} \text{ followed by } \tilde{g} \to b_1 b \text{ or } \tilde{g} \to \tilde{t}_1)$
- directly in pairs

In ATLAS several searches to cover different production and decay modes and regions of the phase space.

Interpretation in the context of simplified models, assuming typically 100% BR for given decay mode.

Direct sbottom and/or gluino-mediated production:

- 0L: *JHEP10(2013)189*
- $0L + \ge 7-10$ jets : *JHEP10(2013)130*
- 0/1L + 3 b-jets: arXiv 1407.0600
- → 2SS/3L: *JHEP* 06 (2014) 035

Direct stop searches:

- → 0L: arXiv:1406.1122
- → |L: arXiv 1407.0583
 - 2L: JHEP 06 (2014) 124
 - Z search: *Eur. Phys. J. C (2014)* 74:2883
 - stau search: ATLAS-CONF-2014-014
- →• c search: *arXiv 1407.0608*

→ Most recent results presented in this talk

Direct sbottom and gluino-mediated stop/sbottom

Target models

Direct sbottom

Gluino-mediated stop / sbottom

0/1 lepton + 3 b-jets

0/1 lepton, \geq 3 b-jets, 4-7 jets, MET

3 sets of SRs:

- $0L + \ge 4$ jets: sbottom models
- $0L + \ge 7$ jets, $IL + \ge 6$ jets: models with tops

Backgrounds:

- fake b-jets (mainly ttbar) → Matrix Method
- processes with 3 real b-jets: ttbar + b/bbbar (using 2 lep. CR), ttbar + Z/h(\rightarrow bbbar) (from MC)

Maria Fiascaris (U. of Chicago)

p

p

SUSY2014, 21/07/2014

NEW

arXiv 1407.0600

0/1 lepton + 3 b-jets

Direct sbottom

NEW

SUSY2014, 21/07/2014

2SS / 3L + jets

2 same-sign or 3 leptons, jets, MET

Variable	SR3b	SRIb	SR0b	SR3L _{low}	SR3L _{high}
Leptons	SS or 3L	SS	SS	3L	3L
N b-jets	≥3	≥∣	0	-	-
Njets	≥5	≥3	≥3	≥4	≥4
Ε τ ^{miss}	-	> 150	> 150	50 - 150	> 150
m _{Eff}	> 350	> 700	> 400	> 400	> 400

arXiv 1404.2500, JHEP 06 (2014) 035

Backgrounds:

0

1

- fake leptons \rightarrow Matrix Method
- charge mis-identification: datadriven (likelihood method)
- processes with prompt leptons (dibosons, ttbar +V): from MC, cross-checked in validation regions

SR3Llow, SR3Lhigh

Maria Fiascaris (U. of Chicago)

450

400

550

500

600

650

m_{6.} [GeV]

700

50

300

350

SUSY2014, 21/07/2014

2 Number of b-jets with p₁>20 GeV

Direct stop

Stop decay modes

The stop can decay to a variety of final states, depending also on the mass hierarchy of the lightest stop, chargino and neutralino

All hadronic final states

Target 2 possible stop decay modes (100% BR for each decay mode and a mix of the two)

0 leptons, \geq 2 b-jets, MET

Three sets of signal regions:

- SRA, "fully resolved": 6 distinct jets from stop-stop decay (in A, B)
- SRB, "partially resolved": 4 or 5 jets due to boosted top in A (high stop mass)
- SRC: 5 jets, one below threshold due to small mass splitting $m_{\tilde{\chi}_1^\pm} m_{\tilde{\chi}_1^0}$ in B

arXiv:1406.1122

mode A

mode B

Discriminating variables

- min $\Delta \phi$ (MET, jet): reject events with fake MET
- m_T from MET and b-jet closest in ϕ to MET vector: reject ttbar

Main Backgrounds:

- Multi-jets: jet smearing method
- Semileptonic ttbar and $Z(\nu\nu)$ + HF jets: from CRs

I lepton CR, treat lepton as jet

2 lepton CR, add lepton p⊤ to MET

Maria Fiascaris (U. of Chicago)

All hadronic final states: limits

- Preselection: I lepton, ≥ 2-4 jets, MET
- 15 SRs for different decay modes and parts of the mass plane
- Main background di-leptonic ttbar, discriminating variables: mT and mT2 variables, topness, hadronic top mass, etc.
- W+jets and ttbar background normalized in CRs (selected using m_T)
- Hypothesis testing using cut-and-count or shape-fit

Maria Fiascaris (U. of Chicago)

SUSY2014, 21/07/2014

SUSY2014, 21/07/2014

700

 m_{f} [GeV]

= 25% = 50%

= 100%

All limits at 95% CL

600

Stop charm search

NEW

arXiv 1407.0608

Two possible stop decay modes for $\Delta m < m_W + m_b$ (where $\Delta m \equiv m_{\tilde{t}_1} - m_{\tilde{\chi}_1^0}$)

•
$$ilde{t}_1
ightarrow c + ilde{\chi}_1^0$$

four-body decay

Signature:

 \bullet two charm jets with relatively low p_T

• small MET

 \rightarrow Require ISR to boost the stop system

Two different approaches:

• small Δm (< 20 GeV): c-jets with low p_T

➡ mono-jet like approach:

 \leq 3 jets, high p_T leading jet, large MET

• large Δm (> 20 GeV): c-jets reconstructed

⇒ charm tagging
 ≥ 4 jets, ≥ I c-tagged jet, high p⊤
 untagged leading jet, large MET

Main backgrounds (W/Z+jets and ttbar) normalized to data in CRs

Stop charm search: limits

SUSY2014, 21/07/2014

Summary

ATLAS has a strong search program for third generation squarks. No excess found in Run I, stringent exclusion limits were set.

Looking forward to Run2 with increased centre of mass energy and luminosity!

Maria Fiascaris (U. of Chicago)

ATLAS has a strong search program for third generation squarks. No excess found in Run I, stringent exclusion limits were set.

Looking forward to Run2 with increased centre of mass energy and luminosity!

Maria Fiascaris (U. of Chicago)

EXTRAS

Searching for SUSY at the LHC

0 lepton + 2 b-jets + MET

0 leptons, \geq 2 b-jets, MET

- SRB: small Δm (squark, neutralino) exploit ISR
- Ist jet: high p⊤, anti b-tagged
- 2nd and 3rd jets b-tagged, small $H_{T,3}$, large MET

Main backgrounds:

- $Z(\nu\nu)$ + HF jets: 2-lepton CRs (SFOS m_{II} close to Z mass)
- Top and W + HF jets: I-lepton CRs or 2-lep with DFOS

Maria Fiascaris (U. of Chicago)

Gluino-mediated stop summary

stop 2 lepton searches

Three different analysis strategies:

JHEP 06 (2014) 124

leptonic mt2: targets (a) (large Δm) and 3 body-decay

• require large mT2

hadronic mt2: targets (b) (small Δm)

• require 2 b-jets, large mT2 b-jet

multivariate: targets (c) with on-shell top

• \geq 2 jets, large MET, large m_{Eff}, train BDT using MET, m_{II}, m_{T2}, $\Delta \phi$ (I,I), $\Delta \phi$ (MET,I), $\Delta \phi$ (MET,jet)

stop 2 lepton searches

stop Z search

arXiv 1403.5222, accepted by EPJC

For $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ and m(stop I) \approx m(top) + m(LSP) signature very similar to ttbar

Use $\tilde{t}_2 \rightarrow Z \tilde{t}_1$ to discriminate against ttbar

Signature:

 $Z \rightarrow |^+|^-$ (I), 3-5 jets, $\geq I$ b-jets, MET

Relaxing the assumption of BR($\tilde{t}_2 \rightarrow Z \tilde{t}_1$)=100%, including the decay modes $\tilde{t}_2 \rightarrow t \tilde{\chi}_1^0$ and $\tilde{t}_2 \rightarrow h \tilde{t}_1$ \rightarrow interpret the results as limits on the decay branching ratios

Summary

Excess in WW production?

Measurements of WW cross-section at 8 TeV

Phys. Lett. B 721 (2013) 190-211

CMS: 69.9 ± 2.8 (stat) ± 5.6 (syst) ± 3.1 (lumi) pb TH: 57.3 + 2.3 - 1.6 pb

ATLAS-CONF-2014-033

SUSY2014,21/07/2014

Run 2 and beyond

