Higgs Bosons in the pMSSM

SUSY 2014, 7/25/2014
Matthew Cahill-Rowley, JoAnne Hewett, Ahmed Ismail, Tom Rizzo
1206.5800, 1308.0297, To Appear

The p(henomenological)

- 19/20 parameter subspace of the MSSM (Neutralino/Gravitino LSP).
- Created by applying experimentally-motivated assumptions to the full MSSM lagrangian.

■ "Unprejudiced" by assumptions about physics at high scales.

- Allows us to study correlations between very different observables (SUSY searches, Higgs measurements, DM, etc)

Our Methodology

General MSSM Lagrangian +

Minimal Flavor Violation
No new CP phases
Flavor-Diagonal Sparticle Mass Matrices
$1^{\text {st }}$ and $2^{\text {nd }}$ generations degenerate
R-parity Conservation
= 19/20 weak scale parameters
$\left(M_{1}, M_{2}, M_{3}, \mu, \tan \beta, M_{A}, q_{1,3}, u_{1,3}, d_{1,3}, I_{1,3}, e_{1,3}, A_{t, b, T}+m_{3 / 2}\right)$

- Randomly sample the 19/20-dimensional parameter space.
- Discard points excluded by non-LHC constraints (precision EW, heavy flavor, LEP limits, Direct Detection, $\left.\Omega_{\mathrm{LSP}} \leq \Omega_{\mathrm{DM}}\right)$
- Examine resulting model sets.

Parameter Scan Ranges

- Upper bound on masses chosen to test LHC reach.
- Log prior allows sampling of a wide range of gravitino mass scales.
$50 \mathrm{GeV} \leq\left|\mathrm{M}_{1}\right| \leq 4 \mathrm{TeV}$
$100 \mathrm{GeV} \leq\left|\mathrm{M}_{2}, \mu\right| \leq 4 \mathrm{TeV}$
$400 \mathrm{GeV} \leq \mathrm{M}_{3} \leq 4 \mathrm{TeV}$
$1 \leq \tan \beta \leq 60$
$100 \mathrm{GeV} \leq \mathrm{M}_{\mathrm{A}}, \mathrm{I}, \mathrm{e} \leq 4 \mathrm{TeV}$
$400 \mathrm{GeV} \leq \mathrm{q}_{1}, \mathrm{u}_{1}, \mathrm{~d}_{1} \leq 4 \mathrm{TeV}$
$200 \mathrm{GeV} \leq \mathrm{q}_{3}, \mathrm{u}_{3}, \mathrm{~d}_{3} \leq 4 \mathrm{TeV}$
$\left|A_{t, b, T}\right| \leq 4 \mathrm{TeV}$
$1 \mathrm{eV} \leq \mathrm{m}_{3 / 2} \leq 1 \mathrm{TeV}$ (log prior)

Calculating Model Properties

- Sparticle/Higgs spectrum from SOFTSUSY, cross-checked with SuSpect.
- Calculate sparticle decays with modified SUSYHIT, supplemented with CalcHEP and MadGraph (multi-body decays for models with a Ǧ LSP).
- Calculate thermal relic density of LSP (if LSP is a neutralino) or NLSP (if LSP is a gravitino) with micrOMEGAs.
- Calculate light Higgs partial widths using HDECAY 5.11, normalize to HDECAY prediction for SM Higgs with the same mass

Model Constraints

- Precision EW constraints: g-2, Z invisible width, $\Delta \rho$
- Flavor constraints: $b \rightarrow s \gamma, B_{s} \rightarrow \mu \mu, B \rightarrow \tau v$
- Charged sparticle masses $>100 \mathrm{GeV}$
- Impose LHC stable particle, $\Phi \rightarrow \tau \tau$ constraints
- Require $\Omega_{\mathrm{LSP}} \leq \Omega_{\mathrm{DM}}$
- Model independent constraints from Direct Detection experiments ($\tilde{\mathrm{X}}$ LSP) or Big Bang Nucleosynthesis (G LSP)
- Require $\mathrm{m}_{\mathrm{h}}=126+-3 \mathrm{GeV}$ (theory uncertainty dominant!)
- Result: Two model samples, divided by LSP type:
$\square \sim 45 k$ points with a neutralino LSP
$\square \sim 21 \mathrm{k}$ points with a gravitino LSP

LHC SUSY Searches

- 37 LHC searches applied using PYTHIA/PGS package with custom analysis code.

■ See the Monday talk on LHC pheno ("The LHC Confronts the pMSSM") for details.

- Jets+MET, OI and 1I stop searches simulated at the 14 TeV LHC, using projections from ATLAS-PHYS-PUB-2013-001, -002 and -004 (Jets+MET) and -011 (Stop searches)
- Luminosity scaling to extrapolate between $300 \mathrm{fb}^{-1}$ and $3 \mathrm{ab}^{-1}$ limits

Coupling Measurements

- Current Higgs measurements sensitive to few pMSSM models.
- Use 4 projected sensitivities as benchmarks:
$\square 14 \mathrm{TeV}$ LHC, $300 \mathrm{fb}^{-1}$ luminosity
$\square 14$ TeV LHC, $3 \mathrm{ab}^{-1}$ luminosity
$\square 250,500 \mathrm{GeV}$ ILC, $500 \mathrm{fb}^{-1}$ luminosity ("ILC-500")
$\square 250,500,1000$ GeV ILC, $5.25 \mathrm{ab}^{-1}$ luminosity ("HL-ILC500")
- Examine constraints on individual couplings (allows direct comparison between SUSY search results and LHC/LLC Higgs measurements)
- Coupling extraction complicated for LHC! (Use global fit, assuming no new production modes and family universality)

h^{0} couplings

- Consider couplings of the light Higgs to bb, tt, YY, and gg, normalized to their SM values:

$$
r_{X X}=\frac{B R\left(h^{0} \rightarrow X X\right) \times \Gamma_{h^{0}}}{B R\left(h_{S M} \rightarrow X X\right) \times \Gamma_{h_{S M}}}
$$

- Important corrections missing from Higgs couplings to vector bosons prevent their inclusion in this study.
- Important caveat: Theory uncertainties for the SM and MSSM Higgs couplings were not included in this analysis!

h^{0} Couplings: $\mathrm{h}-\mathrm{y}-\mathrm{y}$

- Very light charged sparticles can modify the diphoton partial width. Smaller contributions can come from highly mixed stops (See Carena et. AI, 1303.4414).
- SUSY searches have a small impact on histogram shapes.

h 0 Couplings: h-g-g

- Stop loop contribution is larger than for h-y-y coupling and has opposite sign.
- Depending on measured central value, HL-ILC could exclude essentially all of these models!

Neutralino LSP

Gravitino LSP

h 0 Couplings: h-b-b

- Observable tree-level deviations from SM prediction ($\sim 5 \%$ for $\mathrm{m}_{\mathrm{A}}=1 \mathrm{TeV}$)
- Very large (>100\%) radiative corrections possible for nondecoupled sbottoms.

Neutralino LSP

Gravitino LSP

Sbottoms and the h-b-b coupling

Neutralino LSP

- Radiative corrections can be very large
- Corrections slowly decouple with increasing sbottom mass
- 100%
corrections still allowed by SUSY searches

h0 Couplings: h-T-T

- Same as h-b-b coupling at tree level.
- Radiative corrections are electroweak, and therefore weaker than for the h-b-b case.

Gravitino LSP

h^{0} invisible width

- Bino-like neutralino can be lighter than $\mathrm{m}_{\mathrm{h}} / 2 \rightarrow$ invisible decays.
- Neutralino LSP: Thermal freeze-out sets minimum hxX coupling.
- Gravitino LSP: hXX coupling can be very small without overclosing.

Constraining the $\mathrm{m}_{\mathrm{A}}-\tan (\beta)$ plane

Conclusions

- Precision Higgs measurements at the LHC and ILC are a powerful and essential probe of the MSSM.
- Null SUSY search results have a small effect on the range of expected Higgs couplings (large deviations from SM prediction are still allowed).
- Combined search program provides many opportunities for discovery!

Backup Slides

- Precision Higgs measurements at the LHC and ILC are a powerful and essential probe of the MSSM.
- Null SUSY search results have a small effect on the range of expected Higgs couplings (large deviations from SM prediction are still allowed).

Diphoton signal strength

hºt-t Coupling

Low-FT Distributions

Low-FT invisible width

Low-FT invisible width

Excluded Fractions For Models Surviving Current LHC Searches:

Channel	$300 \mathrm{fb}^{-1} \mathrm{LHC}$	$3 \mathrm{ab}^{-1} \mathrm{LHC}$	500 GeV ILC	HL 500 GeV ILC
$b \bar{b}$	$16.6(27.7,0.5)$	$33.4(48.5,5.5)$	$78.4(88.8,49.1)$	$91.1(95.8,77.3)$
$\tau \tau$	$0.7(0.8,2.9)$	$3.1(2.7,5.7)$	$11.5(9.9,11.9)$	$36.9(34.2,32.9)$
$g g$	$0.02(0.04,0.5)$	$0.5(0.6,3.1)$	$99.4(99.7,99.7)$	$100.0(100.0,100.0)$
$\gamma \gamma$	$0.02(0.07,0)$	$0.02(0.09,0.2)$	$0.02(0.07,0)$	$0.1(0.2,0.6)$
Invisible	$0(0,0)$	$0(0,0)$	$0.01(0.01,6.2)$	$0.02(0.01,7.5)$
All	$17.1(28.2,3.8)$	$34.9(49.6,11.1)$	$99.8(99.96,99.92)$	$100.0(100.0,100.0)$

