The LHC confronts the pMSSM

Matthew Cahill-Rowley (SLAC)

SUSY 2014 Manchester, UK 7-21-2014

Matthew Cahill-Rowley, JoAnne Hewett, Ahmed Ismail, Thomas Rizzo 1206.4321, 1211.1981, 1307.8444, To Appear

The p(henomenological) MSSM

- 19/20 parameter subspace of the MSSM (Neutralino/Gravitino LSP).
- Created by applying experimentallymotivated assumptions to the full MSSM lagrangian.
- "Unprejudiced" by assumptions about physics at high scales.

Our Methodology

General MSSM Lagrangian +

Minimal Flavor Violation No new CP phases Flavor-Diagonal Sparticle Mass Matrices 1st and 2nd generations degenerate R-parity Conservation

= 19/20 weak scale parameters

 $(M_1, M_2, M_3, \mu, \tan \beta, M_A, q_{1,3}, u_{1,3}, d_{1,3}, I_{1,3}, e_{1,3}, A_{t,b,t} + m_{3/2})$

- Randomly sample the 19/20-dimensional parameter space.
- Discard points excluded by non-LHC constraints (precision EW, heavy flavor, LEP limits, Direct Detection, $\Omega_{LSP} \le \Omega_{DM}$)
- Examine the LHC's ability to discover or exclude viable points.

Model Set Generation

Scan Ranges:

```
50 GeV \leq |M_1| \leq 4 TeV
100 GeV \leq |M_2, \mu| \leq 4 TeV
400 GeV \leq M_3 \leq 4 TeV
1 \leq \tan \beta \leq 60
```

```
100 GeV \leq M_A, I, e \leq 4 TeV
400 GeV \leq q_1, u<sub>1</sub>, d<sub>1</sub> \leq 4 TeV
```

```
200 GeV \leq q_3, u_3, d_3 \leq 4 TeV
```

 $|\mathsf{A}_{\mathsf{t},\mathsf{b},\mathsf{T}}| \le 4 \text{ TeV}$

 $1 \text{ eV} \le \text{m}_{3/2} \le 1 \text{ TeV}$ (log prior)

Calculations:

- Generate spectra with SOFTSUSY, crosscheck with SuSpect.
- Calculate sparticle decays with modified SUSY-HIT, supplemented with CalcHEP and MadGraph (multi-body decays).
- Calculate thermal relic density of LSP (if LSP is a neutralino) or NLSP (if LSP is a gravitino) with micrOMEGAs.
- **Two model sets**, divided by LSP type:
 - * ~2.2×10⁵ points with a neutralino LSP (45k models have $m_h = 126 \pm 3$ GeV).
 - * ~2.3×10⁵ points with a gravitino LSP (21k models have $m_h = 126 \pm 3$ GeV).

Simulating the LHC Searches

- For each point, we generate events with PYTHIA, scale to NLO with Prospino, and pass through PGS for detector simulation.
- PYTHIA and PGS modified extensively to deal with long-lived sparticles:
 - Added object beta and production location to PGS output
 - Included hadronization for metastable squarks/gluinos
 - Altered momentum resolution and MET calculation to treat HSCPs correctly
- Analysis code applies the published cuts and compares the results for each channel with limits calculated using the CLs procedure.
- Analysis code validated for each search region by comparing with published benchmarks.
- 34 ATLAS + 3 CMS searches simulated! (MET-based, HSCP and Displaced Vertices)

A Gravitino LSP

• NLSP decays to gravitino with planck-suppressed width:

$$\Gamma_{NLSP} \approx \frac{1}{48\pi M_{planck}^2} \frac{m_{NLSP}^5}{m_{Gravitino}^2}$$

- Gravitino masses between 1 eV and 1 TeV give $c \tau_{NLSP}$ between 4×10^{-12} m and 8×10^{28} m.
- NLSP is almost always produced in cascade decays.

Resulting Model Sets

Colored Sparticle Exclusions

- Weakest limits on models with compressed spectra
- Invisible NLSPs are sneutrinos and detector-stable neutralinos
- Displaced NLSP decays can be rejected by quality cuts

Simplified limit from 8 TeV 20 fb⁻¹ Jets+MET (Assumes degenerate squarks and massless LSP)

Gravitino LSP, Visible NLSP

Sparticle Exclusions: Gluino

- Simplified model ≈ excluded region for Neutralino LSP
- Sneutrino and stau NLSPs account for most of surviving gravitino LSP models with light gluinos

Gravitino LSP

Visible NLSP

1800

1600

1400

1200

1000 800

Sparticle Exclusions: Stop

- Simplified model ≠ pMSSM exclusion!
- Stau, sneutrino NLSPs once again most weakly constrained for G LSP

More about Stops (Neutralino LSP)

Sparticle Exclusions: Chargino

- Small exclusion reach for models without light sleptons.
- Key target for searches at 14 TeV!

Displaced Decays

- If NLSP is metastable, nearly all events contain displaced objects!
- Displaced leptons/jets typically removed/rejected by quality cuts.
- Some displaced decays can be targeted by exotics searches, but coverage remains incomplete.

Low Fine-Tuning

- Generated smaller model set (~10k models) with FT < 100 (Barbieri-Giudice) + $\Omega_{LSP} = \Omega_{DM}$.
- Characteristics:
 - ✤ Stop below ~1.7 TeV
 - Higgsino mass below 450 GeV
 - Bino-like LSP (to saturate relic density)
- Simulated 14 TeV Jets+MET and Stop searches exclude all of these models!

Summary

- The pMSSM is a powerful tool for analyzing the performance of the LHC, and looking for particularly challenging regions.
- LHC searches have robust sensitivity to models with neutralino and gravitino LSPs.
- Weakest sensitivity to compressed spectra and gravitino LSP models with slepton/sneutrino NLSPs and/or displaced NLSP decays.
- LHC Run II will be a powerful test of natural SUSY!

Backup Slides

Model Set Generation (Constraints)

- Precision EW constraints: g 2, invisible width of Z, $\Delta \rho$
- Flavor constraints: $b \rightarrow s\gamma$, $B_s \rightarrow \mu\mu$, $B \rightarrow \tau\nu$
- Require all charged sparticles > 100 GeV
- Impose LHC stable particle, $\Phi \rightarrow \tau \tau$ constraints
- $m_h \approx 126 \text{ GeV } \underline{\text{not}}$ required during model generation (SUSY searches generally independent of Higgs mass)
- Cosmology: LSP-dependent
 - Neutralino: Check direct detection constraints, impose WMAP as <u>upper</u> <u>bound</u> on thermal relic density
 - Gravitino: No direct detection limits, No limit on thermal relic density. Upper bound on nonthermal relic density (from NLSP decay) and limits from BBN

Standard (MET-based) SUSY searches

7 TeV searches

Search	Reference
2-6 jets	ATLAS-CONF-2012-033
multijets	ATLAS-CONF-2012-037
1 lepton	ATLAS-CONF-2012-041
3rd Gen. Squarks (3b)	1207.4686
Very Light Stop	ATLAS-CONF-2012-059
Medium Stop	ATLAS-CONF-2012-071
Heavy Stop (0ℓ)	1208.1447
Heavy Stop (1ℓ)	1208.2590
GMSB Direct Stop	1204.6736
Direct Sbottom	ATLAS-CONF-2012-106
3 leptons	ATLAS-CONF-2012-108
1-2 leptons	1208.4688
Slepton/gaugino (2ℓ)	1208.2884
Gaugino (3ℓ)	1208.3144
4 leptons	1210.4457
1 lepton + many jets	ATLAS-CONF-2012-140
$1 \text{ lepton} + \gamma$	ATLAS-CONF-2012-144
$\gamma + b$	1211.1167
$\gamma\gamma + MET$	1209.0753

8 TeV searches

Search	Reference
2-6 jets	ATLAS-CONF-2012-109
multijets	ATLAS-CONF-2012-103
1 lepton	ATLAS-CONF-2012-104
SS dileptons	ATLAS-CONF-2012-105
2-6 jets	ATLAS-CONF-2013-047
Medium Stop (2ℓ)	ATLAS-CONF-2012-167
Med./Heavy Stop (1ℓ)	ATLAS-CONF-2012-166
Direct Sbottom (2b)	ATLAS-CONF-2012-165
3rd Gen. Squarks (3b)	ATLAS-CONF-2012-145
3rd Gen. Squarks (3ℓ)	ATLAS-CONF-2012-151
3 leptons	ATLAS-CONF-2012-154
4 leptons	ATLAS-CONF-2012-153
Z + jets + MET	ATLAS-CONF-2012-152

Total: 32 ATLAS searches

Standard (MET-based) SUSY searches

Displaced Searches

HSCP Searches

Search	% Excluded
Disappearing Tracks (CONF-2012-111)	4.55 %
Displaced µ+Jet (1210.7451)	2.75 %
Displaced Dilepton (CMS, 1211.2472)	3.75 %
Displaced Dijet (CMS-PAS-EXO-12- 038)	12.02 %
Combination	15.30 %

Search	% Excluded
7 TeV HSCP (CMS, 1205.0272)	68.83 %
8 TeV HSCP (CMS, 1305.0491)	90.20 %
Combination	90.20 %

Colored Sparticle Exclusions (14 Tev)

- Simulated 14 TeV Jets+MET and stop searches (0-lepton and 1-lepton)
- Luminosity scaling to extrapolate limits between 300 fb-1 and 3 ab-1
- Only simulated models with correct Higgs mass due to CPU limitations

Simplified limit from 8 TeV 20 fb⁻¹ Jets+MET (Assumes degenerate squarks and massless LSP)

Displaced Object Searches

- Sensitive to NLSPs which produce multiple visible decay products (Neutralinos, Charginos, Stops)
- Dilepton and dijet searches require the displaced vertex and dijet/dilepton momentum to be collinear
- More careful simulation required to verify that the muon+jet search is sensitive to displaced stop decays

Multi-body Decays

- Direct decays to the gravitino are suppressed, so 3-, 4-, and even 5-body decays can be dominant (calculated in CalcHEP)
- Important for decays involving stops, charginos, or gluinos and right-handed sfermions

Gravitino Cosmology: Big Bang Nucleosynthesis

- Heavy gravitinos interact extremely weakly →
 NLSP can be very long-lived
- Decays after .01 s can affect BBN
- Constraints determined by decay product composition (hadronic, electromagnetic or invisible) and NLSP lifetime
- Extremely long-lived particles can produce detectable photon or neutrino backgrounds

BBN Constraints on a neutralino NLSP

Gravitino Cosmology: Big Bang Nucleosynthesis

- Heavy charged/colored particles can catalyze reactions directly
- Neutrinos can scatter off thermal bath, producing pions and leptons which affect BBN

Gravitino Mass Histogram

Resulting Model Set

Neutralino NLSP

- Searches less effective for detector-stable neutralinos
- Minimal change (slight increase?) in exclusion fraction for neutralinos with macroscopic decay lengths

ẽ_R NLSP

- Limits on direct production and cascade production degraded for macroscopic ct
- Relatively weak limit on stable e_R due to low production crosssection

Stop NLSP

- Limit degraded for macroscopic stop decay lengths
- Muon+displaced vertex search provides important constraint on displaced stop decays
- Strong limit on stable stops (large production crosssection)

Chargino NLSP

- HSCP searches highly effective
- No direct limit on promptly decaying chargino NLSPs (WW+ MET has large backgrounds)

Squark/Gluino NLSP

- Limit degraded for macroscopic decay lengths (hardest jet frequently results from NLSP decay)
- Extremely strong limit on stable squarks/gluinos

Higgs Mass Histogram (Searches)

- SUSY searches are essentially independent of m_h
- Individual search exclusions also uncorrelated with m_h

