Higher-order scalar interactions and SM vacuum stability

Marek Lewicki

Institute of Theoretical Physics, Faculty of Physics, University of Warsaw

SUSY2014, 24 July 2014, Manchester
based on:
Z. Lalak, P. Olszewski and ML, JHEP05(2014)119

The project "International PhD Studies in Fundamental Problems of Quantum Gravity and Quantum Field Theory" is realized within the MPD programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund

SM Effective potential

Standard Model Effective potential

$$
V_{S M}(\mu)=-\frac{m^{2}}{2} \phi^{2}+\frac{\lambda}{4} \phi^{4}+\sum_{i} \frac{n_{i}}{64 \pi^{2}} M_{i}^{4}\left[\ln \left(\frac{M_{i}^{2}}{\mu^{2}}\right)-C_{i}\right]
$$

For large field values $m^{2} \ll \phi^{2}$ and $\mu=\phi$ the potential is very well approximated by

$$
\begin{gathered}
V_{S M}(\phi) \approx \phi^{4}\left\{\frac{\lambda}{4}+\frac{1}{64 \pi^{2}}\left[6\left(\frac{g_{2}^{2}}{4}\right)^{2}\left(\ln \left(\frac{g_{2}^{2}}{4}\right)-\frac{5}{6}\right)+3\left(\frac{g_{1}^{2}+g_{2}^{2}}{4}\right)^{2}\left(\ln \left(\frac{g_{1}^{2}+g_{2}^{2}}{4}\right)-\frac{5}{6}\right)\right.\right. \\
\left.\left.-12\left(\frac{y_{t}^{2}}{2}\right)^{2}\left(\ln \left(\frac{y_{t}^{2}}{2}\right)-\frac{3}{2}\right)+\left(\frac{3 \lambda}{2}\right)^{2}\left(\ln \left(\frac{3 \lambda}{2}\right)-\frac{3}{2}\right)+3\left(\frac{\lambda}{2}\right)^{2}\left(\ln \left(\frac{\lambda}{2}\right)-\frac{3}{2}\right)\right]\right\} \\
V_{S M}(\phi) \approx \frac{\lambda_{\text {eff }}(\phi)}{4} \phi^{4}
\end{gathered}
$$

SM Metastability

$\lambda_{\text {eff }}<0 \Longrightarrow$ Metastability

D. Buttazzo, et al. [arXiv:1307.3536].
G. Degrassi, et al. [arXiv:1205.6497].

Standard semiclassical formalism

S. R. Coleman, Phys. Rev. D 15 (1977) 2929.
C. G. Callan, Jr. and S. R. Coleman, Phys. Rev. D 16 (1977) 1762.
$O(4)$ symmetric solution to euclidean equation of motion

$$
\begin{gathered}
\ddot{\phi}+\frac{3}{s} \dot{\phi}=\frac{\partial V(\phi)}{\partial \phi}, \\
s=\sqrt{\vec{x}^{2}+x_{4}^{2}} .
\end{gathered}
$$

with

- $\dot{\phi}(s=0)=0$ at the true vacuum
- $\phi(s=\infty)=\phi_{\text {min }}$ at the false vacuum

Action of the bounce solution

$$
\begin{aligned}
S_{E} & =\int d^{4} x\left\{\frac{1}{2} \sum_{\alpha=1}^{4}\left(\frac{\partial \phi(\mathbf{x})}{\partial x^{\alpha}}\right)^{2}+V(\phi(\mathbf{x}))\right\} \\
& =2 \pi^{2} \int d s s^{3}\left(\frac{1}{2} \dot{\phi}^{2}(s)+V(\phi(s))\right)
\end{aligned}
$$

allows us to calculate decay probability $d p$ of a volume $d^{3} x$

$$
d p=d t d^{3} \times \frac{S_{E}^{2}}{4 \pi^{2}}\left|\frac{d e t^{\prime}\left[-\partial^{2}+V^{\prime \prime}(\phi)\right]}{\operatorname{det}\left[-\partial^{2}+V^{\prime \prime}\left(\phi_{0}\right)\right]}\right|^{-1 / 2} e^{-S_{E}}
$$

Simplifying

- normalisation factor replaced with width of the barrier $\propto \phi_{0}$
- size of the universe is $T_{U}=10^{10} \mathrm{yr}$ we can calculate the lifetime of the false vacuum $(p(\tau)=1)$

$$
\frac{\tau}{T_{U}}=\frac{1}{\phi_{0}^{4} T_{U}^{4}} e^{S_{E}}
$$

Analytical solution

K. M. Lee and E. J. Weinberg, Nucl. Phys. B 267 (1986) 181.

Quartic potential :

$$
V(\phi)=\frac{\lambda}{4} \phi^{4} \quad \Longrightarrow \quad S_{E}=\frac{8 \pi^{2}}{3|\lambda|}
$$

for $\lambda<0$.

Standard Model

Approximating by a quartic potential:

$$
\frac{\tau}{T_{U}}=\frac{1}{\phi^{4}\left(\lambda_{\min }\right) T_{U}^{4}} e^{\frac{8 \pi^{2}}{3 \lambda \lambda_{\text {min }}}} \approx 10^{540} .
$$

lifetime is minimal for ϕ that minimizes $\lambda_{\text {eff }}(\phi)$.

Effective potential with nonrenormalisable interactions

We add new nonrenormalisable couplings (similar to V. Branchina and E. Messina, [arXiv:1307.5193].)

$$
V \approx \frac{\lambda_{e f f}(\phi)}{4} \phi^{4}+\frac{\lambda_{6}}{6!} \frac{\phi^{6}}{M_{p}^{2}}+\frac{\lambda_{8}}{8!} \frac{\phi^{8}}{M_{p}^{4}} .
$$

That modify the potential around the Planck scale:

Figure: effective potential with $\lambda_{6}=-1$ and $\lambda_{8}=1$.

Standard Model with nonrenormalisable interactions

Using simple quartic potential approximation:

We minimize

$$
4 \frac{V}{\phi^{4}}=\lambda_{\text {eff }}^{S M}(\phi)+4 \frac{\lambda_{6}}{6!} \frac{\phi^{2}}{M_{p}^{2}}+4 \frac{\lambda_{8}}{8!} \frac{\phi^{4}}{M_{p}^{4}} .
$$

Numerical calculations

Equation we need to solve

$$
\ddot{\phi}+\frac{3}{s} \dot{\phi}=\frac{\partial V(\phi)}{\partial \phi},
$$

is an equation of motion of a particle in potential $-V(\phi)$ with a "time" dependent friction $\frac{3}{5} \dot{\phi}$.

We used a simple Overshot Undershot algorithm

Numerical vs Analytical

Figure: Decimal logatihm of lifetime of the universe in units of T_{U} as a function of the nonrenormalisable λ_{6} and λ_{8} couplings, calculated numerically (left panel) and analytically (right panel).

RG improvement

The correction to the running of the quatric Higgs coupling is of the form

$$
\Delta \beta_{\lambda}=\frac{\lambda_{6}}{16 \pi^{2}} \frac{m^{2}}{M_{p}^{2}} .
$$

One-loop beta functions of new couplings take the form

$$
16 \pi^{2} \beta_{\lambda_{6}}=\frac{10}{7} \lambda_{8} \frac{m^{2}}{M^{2}}+18 \lambda_{6} 6 \lambda-6 \lambda_{6}\left(\frac{9}{4} g_{2}^{2}+\frac{9}{20} g_{1}^{2}-3 y_{t}^{2}\right)
$$

$$
16 \pi^{2} \beta_{\lambda_{8}}=\frac{7}{5} 28 \lambda_{6}^{2}+30 \lambda_{8} 6 \lambda-8 \lambda_{8}\left(\frac{9}{4} g_{2}^{2}+\frac{9}{20} g_{1}^{2}-3 y_{t}^{2}\right),
$$

Figure: Example solution with $\lambda_{6}\left(M_{p}\right)=-1$ and $\lambda_{8}\left(M_{p}\right)=-0.1$

Numerical vs Analytical again

Figure: Decimal logatihm of lifetime of the universe in units of T_{U} as a function of the nonrenormalisable $\lambda_{6}\left(M_{p}\right)$ and $\lambda_{8}\left(M_{p}\right)$ couplings, calculated numerically (left panel) and analytically (right panel).

Comparison

Figure: Contours corresponding to metastability boundary ($\tau=T_{u}$) obtained using four different methods.

SM phase diagram

Conclusions

- Analytical approximation of vacuum lifetime is fairly accurate
- RG improvement stabilizes significant parts of the parameter space
- Standard Model vacuum lifetime can be significantly changed by high energy new physics

Analytical solution

Analytical solutions for simple potentials
K. M. Lee and E. J. Weinberg, Nucl. Phys. B 267 (1986) 181.

Quartic potential:

$$
V(\phi)=\frac{\lambda}{4} \phi^{4} \quad \Longrightarrow \quad S_{E}=\frac{8 \pi^{2}}{3|\lambda|}
$$

for $\lambda<0$.

Quartic and linear potential :

$$
V_{\eta}(\phi)=\left\{\begin{array}{ll}
\frac{\lambda}{4} \phi^{4}, & \phi \leqslant \eta \\
\frac{\lambda}{4} \eta^{4}-K(\phi-\eta), & \phi>\eta
\end{array}, \Longrightarrow \begin{array}{c}
S_{E}=\frac{8 \pi^{2}}{3|\lambda|}\left(1-(\gamma+1)^{4}\right) \\
\gamma=\frac{|\lambda| \eta^{3}}{K}
\end{array}\right.
$$

for $\lambda<0$ and $-1<\gamma<0$

Standard Model with nonrenormalisable interactions

Approximating by quartic and linear potential

$$
\frac{\tau}{T_{U}}=\frac{1}{\eta^{4} T_{U}^{4}} e^{\frac{8 \pi^{2}}{3 \lambda(\eta) \mid}\left(1-(\gamma+1)^{4}\right)}
$$

with: $\lambda(\eta)=4 \frac{V(\eta)}{\phi^{4}}=\lambda_{\text {eff }}^{S M}(\eta)+4 \frac{\lambda_{6}}{6!} \frac{\eta^{2}}{M_{p}^{2}}+4 \frac{\lambda_{8}}{8!} \frac{\eta^{4}}{M_{p}^{4}}$.
We still have to chose η :

$$
\begin{aligned}
& \left(1-(\gamma+1)^{4}\right)=0.994027 \\
& \log _{10}\left(\frac{\tau}{T_{U}}\right)=-178.4
\end{aligned}
$$

$$
\left(1-(\gamma+1)^{4}\right)=0.999999
$$

$$
\log _{10}\left(\frac{\tau}{T_{U}}\right)=-181.4
$$

The difference comes from our arbitrary choice of η, the factor $\left(1-(\gamma+1)^{4}\right)$ is always negligible .

Standard Model with nonrenormalisable interactions

Using simpler quartic potential approximation:

We minimize

$$
4 \frac{V}{\phi^{4}}=\lambda_{\text {eff }}^{S M}(\phi)+4 \frac{\lambda_{6}}{6!} \frac{\phi^{2}}{M_{p}^{2}}+4 \frac{\lambda_{8}}{8!} \frac{\phi^{4}}{M_{p}^{4}} .
$$

$$
\log _{10}\left(\frac{\tau}{T_{U}}\right)=-189.6
$$

Magnitude of the suppression scale

Approximate lifetime:

$$
\frac{\tau}{T_{U}}=\frac{1}{\mu^{4}\left(\lambda_{\text {min }}\right) T_{U}^{4}} e^{\frac{8 \pi^{2}}{3 \lambda \lambda_{\text {min }}}} .
$$

Positive λ_{6} and $\lambda_{8} \rightarrow$ stabilizing the potential

Figure: Scale dependence of $\frac{\lambda_{\text {eff }}}{4}=\frac{V}{\phi^{4}}$ with $\lambda_{6}=\lambda_{8}=1$ for different values of suppression scale M. The lifetimes corresponding to suppression scales $M=10^{8}, 10^{12}, 10^{16}$ are, respectively, $\log _{10}\left(\frac{\tau}{T_{U}}\right)=\infty, 1302,581$ while for the Standard Model $\log _{10}\left(\frac{\tau}{T_{U}}\right)=540$.

Magnitude of the suppression scale

Positive λ_{8} and negative $\lambda_{6} \rightarrow$ New Minimum

Figure: Scale dependence of $\frac{\lambda_{\text {eff }}}{4}=\frac{V}{\phi^{4}}$ with $\lambda_{6}=-1$ and $\lambda_{8}=1$ for different values of suppression scale M. The lifetimes corresponding to suppression scales $M=10^{8}, 10^{12}, 10^{16}$, are, respectively, $\log _{10}\left(\frac{\tau}{T_{U}}\right)=-45,-90,-110$ while for the Standard Model $\log _{10}\left(\frac{\tau}{T_{U}}\right)=540$.

