Distinction between MSSM and NMSSM from the neutralino/chargino sector

Stefano Porto

with K. Rolbiecki, G. Moortgat-Pick, 1404.1053, 1406.7701

SUSY 2014

Manchester, July 25th, 2014

Particles, Strings, and the Early Universe Collaborative Research Center SFB 676

MSSM

1 spartner \forall SM particle, 2 Higgs Doublets.

$$W_{h, \text{MSSM}} = \mu \, \hat{H}_u \cdot \hat{H}_d$$

 \longrightarrow " μ -problem": why μ should be at the SUSY-breaking scale?

NMSSM

 $\mathsf{MSSM} + \mathsf{gauge singlet superfield } \hat{S} = (S, \tilde{S}).$

$$W_{h,\,(\mathbb{Z}_{3}-)\mathsf{NMSSM}} = \lambda\,\hat{S}\,\hat{H}_{u}\cdot\hat{H}_{d} + rac{\kappa}{3}\hat{S}^{3}$$

$$\longrightarrow \mu_{\text{eff}} = \lambda \langle S \rangle = \lambda x.$$

How to distinguish between NMSSM and MSSM scenarios?

MSSM

h, H, A, H^{\pm} : tan β , m_A $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$: M_2 , μ , tan β

 $\tilde{\chi}^{0}_{1,2,3,4}$: $M_{1}, M_{2}, \mu, \tan eta$

$(\mathbb{Z}_{3}-)\mathsf{NMSSM}$ $h_{1,2,3}, a_{1,2}, H^{\pm}: \tan \beta, \lambda, x, \kappa, A_{\lambda}, A_{\kappa}$ $\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{\pm}: M_{2}, \lambda \cdot x, \tan \beta$ $\tilde{\chi}_{1,2,3,4,5}^{0}: M_{1}, M_{2}, \lambda, x, \kappa, \tan \beta$

To pinpoint the underlying model, one would usually look only at the Higgs scalar sector. [Cao et al., 1202.5821], [Benbrik et al., 1207.1096], [Beskidt et al., 1308.1333]

What if, given a MSSM and NMSSM scenarios:

- Higgs spectra are not distinguishable at the LHC and/or not reachable at the LC?
- Similar chargino/neutralino spectra and $\sigma(e^+e^- \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_j^0)$, $\sigma(e^+e^- \rightarrow \tilde{\chi}_i^+ \tilde{\chi}_i^-)$?

These conditions are possible for unconstrained scenarios [hep-ph/0502036].

Stefano Porto

We assume:

- We measure at LHC/LC only the light SUSY masses: $m_{\tilde{\chi}_{1}^0}$, $m_{\tilde{\chi}_{1}^\pm}$, $(m_{\tilde{\chi}_{3}^0})$.
- At the LC:
 - We exploit polarized beams: $(P_{e^-}, P_{e^+}) = (\mp 0.9, \pm 0.55).$
 - We measure $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ and $\sigma(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ at $\sqrt{s} = 350$ and 500 GeV.

The strategy is to:

- χ^2 -fit with Minuit the measured values to the MSSM parameters M_1 , M_2 , μ , tan β . [Desch et al '03]
- Check the compatibility of the fitted (tree-level)-parameters with the MSSM. A non compatible result may suggest the NMSSM.
- Further information from Higgs sector? (resonances, couplings etc.).

Looking at the NMSSM chargino/neutralino sector, we can distinguish the classes:

• Light singlino (LS) scenarios

high \tilde{S} admixture in the light states $\tilde{\chi}_1^0$ or $\tilde{\chi}_2^0$.

• Light higgsino (LH) scenarios

higgsino-like $\tilde{\chi}_1^0$, with $\mu_{\text{eff}} < M_1, M_2$ and high \tilde{S} admixture mainly in $\tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_5^0$.

• Light gaugino (LG) scenarios

gaugino-like $\tilde{\chi}_1^0$, with $\mu_{\rm eff} > M_1, M_2$ and high \tilde{S} admixture mainly in $\tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_5^0$.

LS: Easier distinction looking at higgsino/gaugino features of neutralinos; LH,LG : trickier distinction, similar admixture between the models in the lighter states. For $M_1 > M_2$, contempled also in AMSB, one can get (also [hep-ph/0502036]):

	<i>M</i> ₁ [GeV]	M_2 [GeV]	$\mu, \mu_{eff} = \lambda \cdot x \; [GeV]$	tan β	κ	λ
MSSM	406	115.8	354	8		
NMSSM	365	111	484	9.5	0.16	0.0585

Leading to $m_h = 125$ GeV and, and the tree-level masses [GeV]:

	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_2^0}$	$m_{ ilde{\chi}_3^0}$	$m_{ ilde{\chi}_4^0}$	$m_{ ilde{\chi}_5^0}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$
MSSM	104.8	350.4	360.1	426.7		105.1	375
NMSSM	104.9	350.1	360.5	489.7	504.1	105.1	498.5

We also take $m_{\tilde{e}_l} = 303.5$ GeV.

MSSM	NMSSM			
$ ilde{\chi}_1^0 \sim 93\% ilde{W}$	$ ilde{\chi}^0_1\sim$ 97% $ ilde{W}$			
$\tilde{\chi}^{0}_{2} \sim 26\% \tilde{B} + 69\% \tilde{H}_{u, \ d}$	$ ilde{\chi}^0_2\sim$ 22% $ ilde{B}$ $+$ 73% $ ilde{S}$			
$ ilde{\chi}^0_3 \sim ilde{H}_{u, d}$	$ ilde{\chi}^0_3\sim$ 72% $ ilde{B}+$ 25% $ ilde{S}$			

$\sigma_{ t LO}(e^+e^-$ –	[fb]	
$\sqrt{s}=$ 350 GeV	MSSM	NMSSM
P=(-0.9,0.6)	2491.0	2575.3
P=(0.9,-0.6)	39.5	42.4
$\sqrt{s}=$ 500 GeV	MSSM	NMSSM
P=(-0.9,0.6)	1165.4	1213.0
P = (0.90.6)	18.3	18.8

$\sigma_{ t LO}(e^+e^-$	$\rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$)	[fb]					
$\sqrt{s} = 500 \text{ GeV}$	MSSM	NMSSM					
P=(-0.9,0.6)	24.1	8.6					
$\sigma_{ ext{LO}}(e^+e^- o ilde{\chi}_1^0 ilde{\chi}_3^0)$ [fb]							
$\sqrt{s} = 500 \text{ GeV}$	MSSM	NMSSM					
P=(-0.9,0.6)	25.1	15.0					

• We assume $\delta m/m = 0.5\%$; $\delta \sigma/\sigma = 1\%$.

 χ^2 -fit with NMSSM $m_{\tilde{\chi}^0_{1,2,3}}$, $m_{\tilde{\chi}^{\pm}_1}$, $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}^+_1 \tilde{\chi}^-_1, \tilde{\chi}^0_1 \tilde{\chi}^0_2, \tilde{\chi}^0_1 \tilde{\chi}^0_3)$ to MSSM parameters:

$$\begin{split} M_1 &= 430.0 \pm 1.6 \text{ GeV}, \quad M_2 = 111.8 \pm 0.8 \text{ GeV}, \\ \mu_{\text{eff}} &= 370.4 \pm 0.7 \text{ GeV}, \quad m_{\nu_e} = 310.6 \pm 2.8 \text{ GeV} \\ &\quad \tan\beta \text{ unconstrained} \end{split}$$

Fit result excludes that the "data" are consistent with the MSSM (χ^2 /d.o.f. = 62.6/5).

Stefano Porto

	M_1 [GeV]	M_2 [GeV]	$\mu, \mu_{\textit{eff}} = \lambda \cdot x \; [{ m GeV}]$	aneta	A_{λ}	A _{kappa}
MSSM/NMSSM	450	1600	120	27	3000	-30

NMSSM, scanning the $\lambda - \kappa$ plane with:

- NMSSMTools-4.2.1 and micrOMEGAs-3.0 for pheno and DM constraints.
 [Ellwanger et Al. '05], [Das et Al '11], [Belanger et Al. '05]
- HiggsBounds-4.0.0 and HiggsSignals-1.0.0 to check the Higgs sector. [Bechtle et Al. '05, '13]

LH scenario: experimental and phenomenological constraints

MSSM neutralino/chargino tree-level spectrum in [GeV]:

$m_{\tilde{\chi}^0_1}$	$m_{\tilde{\chi}^0_2}$	$m_{\tilde{\chi}^0_3}$	$m_{\tilde{\chi}^0_4}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$
114.8	123.3	454.4	1604.1	119.4	1604.1

Light higgsino scenario (LH): cross sections

MSSM neutralino production cross sections ($e^+e^- \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_3, \, \tilde{\chi}^0_2 \tilde{\chi}^0_3$ not open) in [fb]:

$\sigma(e^+e^- ightarrow { ilde \chi}^0_1 { ilde \chi}^0_2)$	$\sqrt{s}=350~{ m GeV}$	$\sqrt{s}=500~{ m GeV}$
P = (-0.9, 0.55)	791.7 fb	391.4 fb
P = (0.9, -0.55)	526.7 fb	261.7 fb

NMSSM:

Light higgsino scenario (LH) - fit

 χ^2 -fit assuming the measurement of the NMSSM $m_{\tilde{\chi}_{1,2,3}^0}$, $m_{\tilde{\chi}_1^\pm}$, with $\delta m/m = 0.5\%$ and $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$, $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_3^0)$, $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$ with $\delta \sigma/\sigma = 1\%$.

In black the regions with not compatible with the MSSM.

Light higgsino scenario (LH) - CP-odd Higgs

In parts of the allowed parameter space, the inclusive $\sigma(e^+e^- \rightarrow \tilde{\chi}_i^0 \tilde{\chi}_j^0 \rightarrow \tilde{\chi}_j^0 \tilde{\chi}_j^0 a_1) \sim \mathcal{O}(10 \,\text{fb})$ at 500 GeV, therefore detecting $a_1 \sim$ singlet is possible, confirming the NMSSM.

	M_1 [GeV]	M_2 [GeV]	μ , $\mu_{\textit{eff}} = \lambda \cdot x$ [GeV]	$\tan\beta$	A_{λ}	A _{kappa}
MSSM/NMSSM	240	105	505	9.2	3700	-50

NMSSM, scanning the $\lambda - \kappa$ plane with:

- NMSSMTools-4.2.1 and micrOMEGAs-3.0 for pheno and DM constraints.
 [Ellwanger et Al. '05], [Das et Al '11], [Belanger et Al. '05]
- HiggsBounds-4.0.0 and HiggsSignals-1.0.0 to check the Higgs sector. [Bechtle et Al. '05, '13]

LG scenario: experimental and phenomenological constraints

Light gaugino scenario (LG) - fit

MSSM neutralino/chargino tree-level spectrum in [GeV]:

$m_{\tilde{\chi}_1^0}$	$m_{\tilde{\chi}^0_2}$	$m_{\tilde{\chi}^0_3}$	$m_{ ilde{\chi}_4^0}$	$m_{\tilde{\chi}_1^{\pm}}$	$m_{\tilde{\chi}_2^{\pm}}$
99.46	237.03	510.13	518.65	99.55	518.71

NMSSM:

Assuming $\delta m/m = 0.5\%$ and $\delta \sigma/\sigma = 1\%$, the χ^2 -fit is not sufficient to distinguish from MSSM.

Less info from the Higgs sector: SM-like Higgs couplings are similar to the MSSM case and a siglet a_1 is not visible at 500 GeV.

Stefano Porto

Conclusions and outlook

- SUSY most studied models, MSSM and NMSSM, can lead to similar Higgs and chargino/neutralino lower spectra and production cross section. Distinction tools required.
- Looking at the neutralino/chargino sector, with polarized beams at the LC, distinction is possible.
 - Measure $m_{\tilde{\chi}_{1\,2}^0}$, $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0)$ and $\sigma_{L,R}(e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-)$.
 - Reconstruct MSSM M_1 , M_2 , μ , tan β and fit.
- Additional info may be given by heavier neutralino states and Higgs singlet resonances.
- Strategy effective depending on the class of scenario considered:
 - Light singlino scenarios ✓
 - Light higgsino scenarios ✓
 - Light gaugino scenarios X

To do:

- Include more Higgs sector observables in the analysis, i.e. couplings to fermions, singlet production etc..
- Extend analysis to other observables as asymmetries, spin-dependent observables, tau polarization, stop sector.

Thank you for your attention!

Backup: chargino and neutralino pair production

Neutralino tree-level production channels at e^+e^- colliders.

Backup: LS parameters and Higgs masses

M1	M ₂	M ₃	$tan\beta$	$\mu_{\mathrm{eff}} = \lambda \mathbf{s}$	${f A}_\lambda$	A _κ
365 GeV	111 GeV	2000 GeV	9.5	484 GeV	4200 GeV	-200 GeV

$M_{Q_{1,2}}, M_{u_{1,2}}, M_{d_{1,2}}$	M _{Q3}	M _{u3}	M _{d3}	M _I , M _e	A _{u3}	A_{d_3} , A_{e_3}
2000 GeV	1500 GeV	1000 GeV	800 GeV	300 GeV	2750 GeV	2000 GeV

LS scenario: tan β , $\mu_{\rm eff}$ and soft parameters, while (λ , κ) = (0.0585, 0.16).

	m_{h_1} [GeV]	m_{h_2} [GeV]	<i>m</i> _{<i>h</i>3} [GeV]	m_{a_1} [GeV]	m_{a_2} [GeV]	$m_{H^{\pm}}$ [GeV]
NMSSM	124.9	303.0	4467.3	324.0	4467.3	4468.1

Higgs spectrum calculated at the 1-loop level with full 2-loops contributions from bottom/top Yukawa couplings with NMSSMTools; h_2 , $a_1 \sim 100\%$ singlets.

[GeV]	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_2^0}$	$m_{ ilde{\chi}_3^0}$	$m_{ ilde{\chi}_4^0}$	$m_{ ilde{\chi}_5^0}$	$m_{ ilde{\chi}_1^\pm}$	$m_{\tilde{\chi}_2^{\pm}}$
MSSM	104.8	350.4	360.1	426.7		105.1	375
NMSSM	104.9	350.1	360.5	489.7	504.1	105.1	498.5
MSSM _{fit}	106.0	368.0	378.0	445.9		106.1	389.1

M_1	M ₂	M ₃	aneta	$\mu_{\mathrm{eff}} = \lambda \mathbf{s}$	${\sf A}_\lambda$	A _κ
450 GeV	1600 GeV	2000 GeV	27	120 GeV	3000 GeV	-30 GeV

$M_{Q_{1,2}}, M_{u_{1,2}}, M_{d_{1,2}}$	$M_{Q_3}, M_{u_3}, M_{d_3}$	M_I, M_e	A _{u3}	A_{d_3}, A_{e_3}
2000 GeV	1500 GeV	300 GeV	3300 GeV	200 GeV

LH scenario: taneta, μ_{eff} and soft parameters.

Backup: LH - naïve fit to SM Higgs

A naïve fit to SM Higgs may suggest different behaviour of the SM-like Higgs between the MSSM and NMSSM.

(a) 7-d.o.f. χ^2 -fit to the SM of the reduced couplings to $g, \gamma, W, Z, b, c, \tau$; (b) Singlet component in the SM-like Higgs, in %.

In the LH case, the only regions not compatible to the SM correspond to a higher singlet component in the SM-like Higgs, confirm the neutralino/chargino sector fit result.

Stefano Porto

M ₁	M ₂	M ₃	$tan\beta$	$\mu_{ m eff} = \lambda {f s}$	${f A}_\lambda$	Aκ
240 GeV	105 GeV	2000 GeV	9.2	505 GeV	3700 GeV	-40 GeV

$M_{Q_{1,2}}, M_{u_{1,2}}, M_{d_{1,2}}$	M _{Q3}	M_{u_3}, M_{d_3}	$M_{I_{1,2}}, M_{e_{1,2}}$	M_{l_3}, M_{e_3}
2000 GeV	1800 GeV	1500 GeV	300 GeV	500 GeV

A _{u3}	A _{d3}	A _{e3}	
3700 GeV	2500 GeV	1500 GeV	

LG scenario: ${\rm tan}\beta$, $\mu_{\rm eff}$ and soft parameters.

In the LG scenario the neutralino production cross sections are very close in all the allowed region in the (λ, κ) -plane to the values of the corresponding MSSM scenario,

MSSM, $\sigma(e^+e^- ightarrow { ilde \chi}^0_1 { ilde \chi}^0_2)$	$\sqrt{s} = 350 \text{ GeV}$	$\sqrt{s}=500~{ m GeV}$
P = (-0.9, 0.55)	7.3 fb	113.4 fb
P = (0.9, -0.55)	0.1 fb	1.8 fb

For example, taking $(\lambda, \kappa) = (0.2, 0.35)$,

NMSSM, $\sigma(e^+e^- ightarrow { ilde \chi}_1^0 { ilde \chi}_2^0)$	$\sqrt{s} = 350 \text{ GeV}$	$\sqrt{s} = 500 { m GeV}$
P = (-0.9, 0.55)	7.3 fb	113.5 fb
P = (0.9, -0.55)	0.1 fb	1.8 fb