Higgs and the electroweak precision observables in the MRSSM

Wojciech Kotlarski University of Warsaw

SUSY 2014 - Manchester, 21 July 2014

Plan of this talk

- Really short motivation
- How to build an R-symmetric SUSY
 - 1) what is an R-Symmetry
 - 2) what is allowed and what not
 - 3) different possible R-symmetric models
- The Higgs sector
- Prediction for the W-boson mass
- Some checks of our benchmark points

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no SUSY at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires ≥ 1 TeV stops (≥ 3 if we neglect mixing)
 - flavour physics suggests even larger SUSY scale (within the MSSM)

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no SUSY at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires ≥ 1 TeV stops (≥ 3 if we neglect mixing)
 - flavour physics suggests even larger SUSY scale (within the MSSM)

Strong motivation to go beyond the MSSM!

- Here MRSSM since:
 - \mathbf{v} it ameliorates the flavour problem of the MSSM Kribs, Poppitz, Weiner (2008)
 - gives correct W and Higgs mass at (possibly very) light stop masses this talk
 - ☑ N=2 SUSY as possible UV completion (although might be hard to realise in practice)

R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag-Łopuszański-Sohnius theorem
- $\hfill \blacksquare$ for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged

$$Q_R(\theta) = 1, \, \theta \to e^{i\alpha\theta}$$

- Lagrangian invariance
 - Kähler potential invariant if R-charge of vector super field is 0
 - R-charge of the superpotential must be 2
 - soft-breaking terms must have R-charge 0

R-symmetry realisation

R charges of component fields						
		Q_{R}	scalar	vector	fermionic	
vector	superfield	0	-	0	1	
chiral s	superfield	Q	Q	-	Q-1	

- freedom in the choice of chiral superfield charge, choose SM fields with R=0
- lacktriangle Higgs superfields Q=0, lepton and quark superfields have Q=1
- R-symmetry forbids

$$\square \ \mu \hat{H}_u \hat{H}_d$$

$$\Box \lambda \hat{E}\hat{L}\hat{L}, \kappa \hat{U}\hat{D}\hat{D}, e\hat{H}\hat{L}$$

Flavour problem ameliorated but now gauginos are massless!

Majorana masses and flavour changing A-terms

One way to fix it: <u>Dirac masses</u>									
Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) Kribs et.al. arXiv:0712.2039									
		$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$				
Singlet	Ŝ	1	1	0	0				
Triplet	Ť	1	3	0	0				
Octet	Ô	8	1	0	0				
R-Higgses	\hat{R}_u	1	2	-1/2	2				
	Âα	1	2	1/2	2				
	Singlet Triplet Octet	Singlet \hat{S} Triplet \hat{T} Octet \hat{O}	Singlet \hat{T} 1 Octet \hat{O} 8	Singlet \hat{S} 1 1 Triplet \hat{T} 1 3 Octet \hat{O} 8 1	Singlet \hat{S} 1 1 0 Triplet \hat{T} 1 3 0 Octet \hat{O} 8 1 0 R-Higgses \hat{R}_u 1 2 $-1/2$				

other realisations:

Davies, March-Russell, McCullough (2011) Frugiuele, Gregoire (2012)

• •

MRSSM in a nutshell

Additional fields:			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	<i>U</i> (1) _R
	Singlet	Ŝ	1	1	0	0
	Triplet	Î	1	3	0	0
	Octet	Ô	8	1	0	0
	R-Higgses	\hat{R}_u	1	2	-1/2	2
		\hat{R}_d	1	2	1/2	2

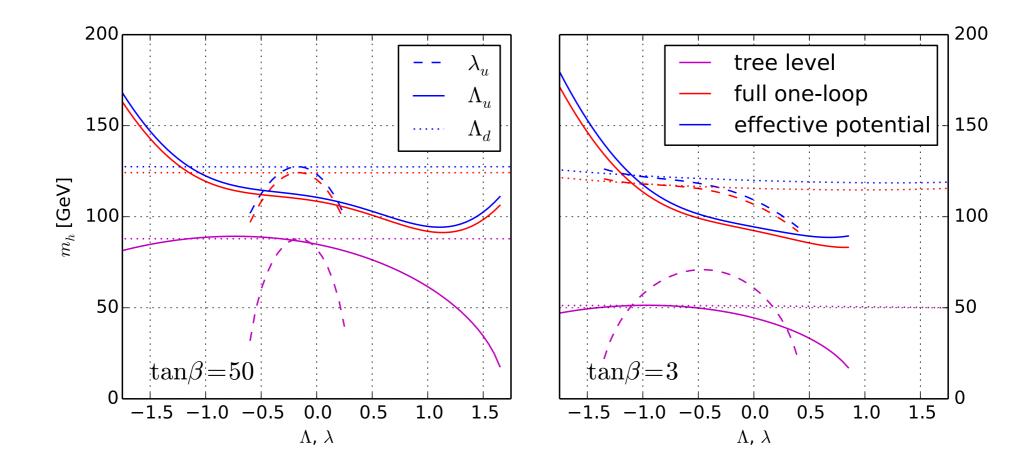
■ Superpotential — Choi, Choudhury, Freitas, Kalinowski, Zerwas (2011)

$$W = \mu_d \, \hat{R}_d \, \hat{H}_d + \mu_u \, \hat{R}_u \, \hat{H}_u$$
$$+ \Lambda_d \, \hat{R}_d \, \hat{T} \, \hat{H}_d + \Lambda_u \, \hat{R}_u \, \hat{T} \, \hat{H}_u + \lambda_d \, \hat{S} \, \hat{R}_d \, \hat{H}_d + \lambda_u \, \hat{S} \, \hat{R}_u \, \hat{H}_u$$
$$- Y_d \, \hat{d} \, \hat{q} \, \hat{H}_d - Y_e \, \hat{e} \, \hat{l} \, \hat{H}_d + Y_u \, \hat{u} \, \hat{q} \, \hat{H}_u$$

- R-Higgses needed to construct mu-type terms and (Lagrangian) quartic-Higgs couplings
- Soft SUSY breaking terms
 - \Box conventional MSSM $B_{\bar{\mu}}$ term allowed
 - Dirac mass terms for gauginos
- Pragmatic approach study low energy phenomenology

Particles content of the MRSSM

Field	Superfield		Boson		Fermion	
Gauge Vector	\hat{g},\hat{W},\hat{B}	0	g, W, B	0	$ ilde{ ilde{g}, ilde{W} ilde{B}}$	+1
Matter	\hat{l},\hat{e}	$\mid +1 \mid$	\tilde{l}, \tilde{e}_R^*	+1	l, e_R^*	0
	\hat{q},\hat{d},\hat{u}	$\mid +1 \mid$	$\tilde{q}, \tilde{d}_R^*, \tilde{u}_R^*$	+1	q, d_R^*, u_R^*	$\mid 0 \mid$
H-Higgs	$\hat{H}_{d,u}$	0	$H_{d,u}$	0	$ ilde{H}_{d,u}$	$\begin{bmatrix} -1 \end{bmatrix}$
R-Higgs	$\hat{R}_{d,u}$	+2	$R_{d,u}$	+2	$\tilde{R}_{d,u}$	+1
Adjoint Chiral	$\hat{\mathcal{O}},\hat{T},\hat{S}$	0	O, T, S	0	$\tilde{O}, \tilde{T}, ilde{S}$	$\begin{bmatrix} -1 \end{bmatrix}$


- real parts of the neutral, scalar, component of chiral multiplets $\hat{H}_d, \hat{H}_u, \hat{S}, \hat{T}$ mix to give 4 scalar Higgs bosons
- imaginary parts of the neutral, scalar, component of the same chiral multiplets mix to give 3
 pseudo-scalar Higgs bosons and one Goldstone boson
- charged, scalar, component of the same chiral multiplets mix to give 3 charged Higgs bosons and one Goldstone boson
- 4 Dirac neutralinos, 4 Dirac charginos, 2 (complex) neutral and 2 charged R-Higgses

Scalar Higgs sector

- 4 scalar degrees of freedom $\{h_d, h_u, s, t\}$ mix to form 4 physical scalar Higgs bosons
- An approximate formula can be given for the lightest Higgs mass at the tree-level

 - $\mbox{\ \ a}$ for large m_A^2 when $\alpha=\beta-\pi/2$
 - $\text{ for simplicity } \lambda = \lambda_u = -\lambda_d, \Lambda = \Lambda_u = \Lambda_d, v_S \approx v_T \approx 0$ $m_{h, \text{approx}}^2 = M_Z^2 \cos^2 2\beta v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2}\lambda\mu\right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda\mu\right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$
 - Tree-level mass of the lightest state always lower than in the MSSM

Lightest Higgs mass — tree level analysis

lacksquare stronger λ_u dependence since $m_S \ll m_T$

$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2} \lambda \mu \right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda \mu \right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

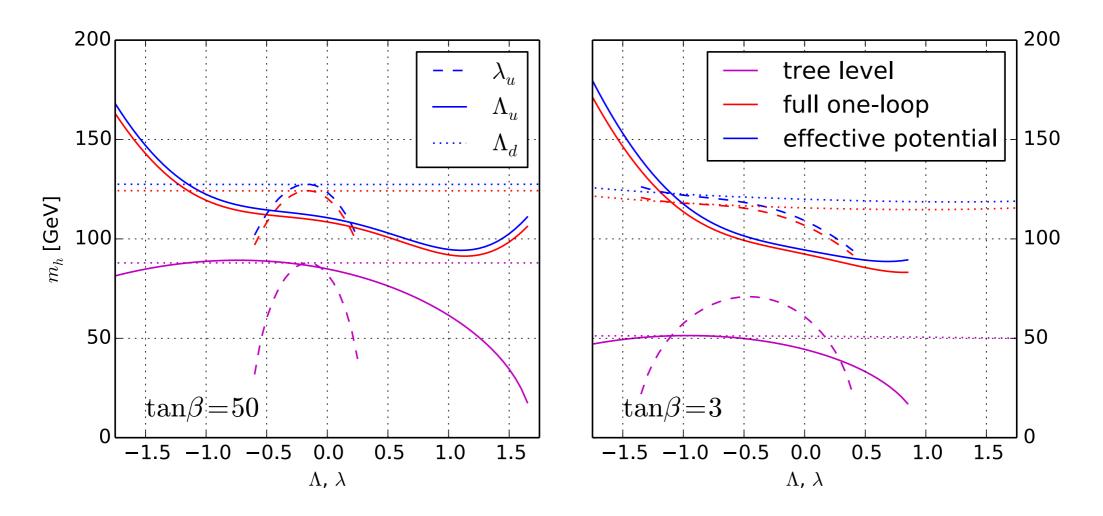
Lightest Higgs mass — effective potential approach

Effective potential approximation (cf. approximate tree level result)

$$\Delta m_h^2 = \frac{2v^2}{16\pi^2} \left[\frac{4\lambda^4 + 4\lambda^2\Lambda^2 + 5\Lambda^4}{8} \log \frac{m_{R_u}^2}{Q^2} + \tan \beta \to \infty \right]$$

$$+ \left(\frac{\lambda^4}{2} - \frac{\lambda^2\Lambda^2}{2} \frac{m_S^2}{m_T^2 - m_S^2} \right) \log \frac{m_S^2}{Q^2}$$

$$+ \left(\frac{5}{8}\Lambda^4 + \frac{\lambda^2\Lambda^2}{2} \frac{m_T^2}{m_T^2 - m_S^2} \right) \log \frac{m_T^2}{Q^2}$$


$$- \left(\frac{5}{4}\Lambda^4 - \lambda^2\Lambda^2 \frac{(M_W^D)^2}{(M_B^D)^2 - (M_W^D)^2} \right) \log \frac{(M_W^D)^2}{Q^2}$$

$$- \left(\lambda^4 + \lambda^2\Lambda^2 \frac{(M_B^D)^2}{(M_B^D)^2 - (M_W^D)^2} \right) \log \frac{(M_B^D)^2}{Q^2}$$

$$+ \frac{\Lambda^2\lambda^2}{2} \right]$$

■ Done by Bertuzzo, Frugiuele, Gregoire, Ponton (2014), although with somewhat different result

Lightest Higgs mass — full 1loop analysis

- large tree-level enhancement of Higgs mass, with 1 TeV stops and no LR mixing (plots), from new states
- 0.5 TeV stops would work also fine but hard to avoid direct detection limits
- few GeV downward difference compared to effective potential result

m_W at tree-level

- MRSSM contains a Y=0 Higgs triplet
- EW-gauge sector is described (at tree-level) in terms of 4 parameters

$$\{g_1, g_2, v, v_T\}$$

Trade 3 of them for input, "low energy", observables

$$\{g_1, g_2, v, v_T\} \rightarrow \{\alpha_{EM}, G_{\mu}, m_Z, v_T\}$$

Define quantity

$$\hat{\rho} = \frac{m_W^2}{m_Z^2 \hat{c}_W^2} \neq 1 \Rightarrow \hat{c}_W^2 = \frac{m_W^2}{\hat{\rho} \, m_Z^2}$$

Calculate muon decay constant at the tree-level

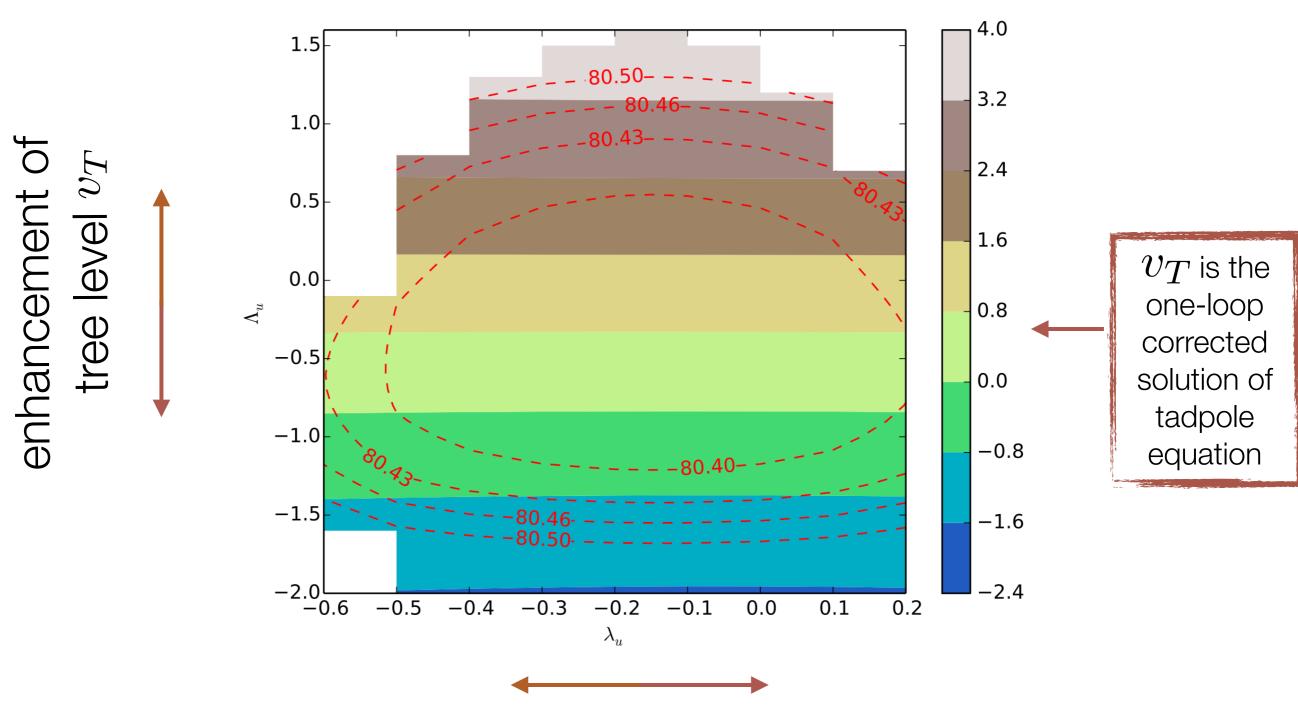
$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi \alpha_{EM}}{2m_W^2 \hat{s}^2} = \frac{\pi \alpha_{EM}}{2m_W^2 \left(1 - \frac{m_W^2}{\hat{\rho} m_Z^2}\right)}$$

m_W master formula at one-loop

 beyond the tree-level there are quantum corrections to the muon decay constant

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi \hat{\alpha}_{EM}}{2m_W^2 \left(1 - \frac{m_W^2}{\hat{\rho} m_Z^2}\right)} (1 + \Delta \hat{r}_W)$$

where

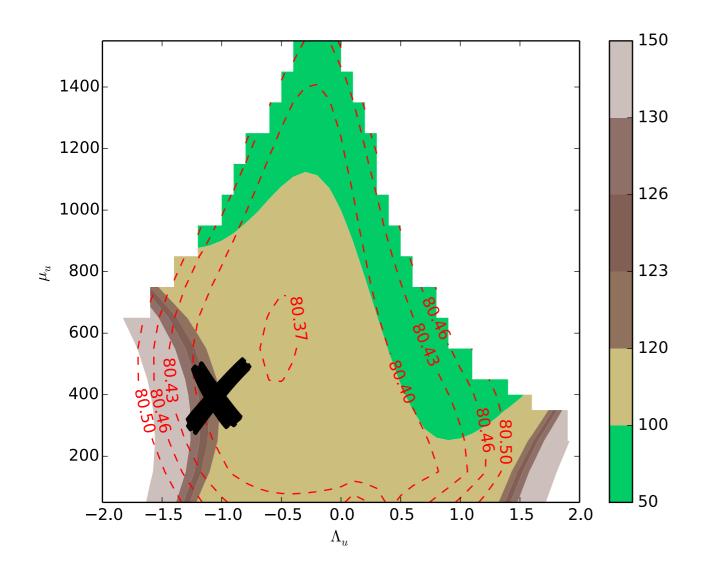

$$\hat{\rho} = \frac{c^2}{\hat{c}^2} = \hat{\rho}_0 \frac{1 + \frac{\hat{\Pi}_{ZZ}^T(m_Z^2)}{m_Z^2}}{1 + \frac{\hat{\Pi}_{WW}^T(m_W^2)}{m_W^2}}$$

- $\Delta \hat{r}_W$ contains: "oblique" and vertex- and box-corrections as well as term that translates pole mW to running one
- lacksquare solve for m_W

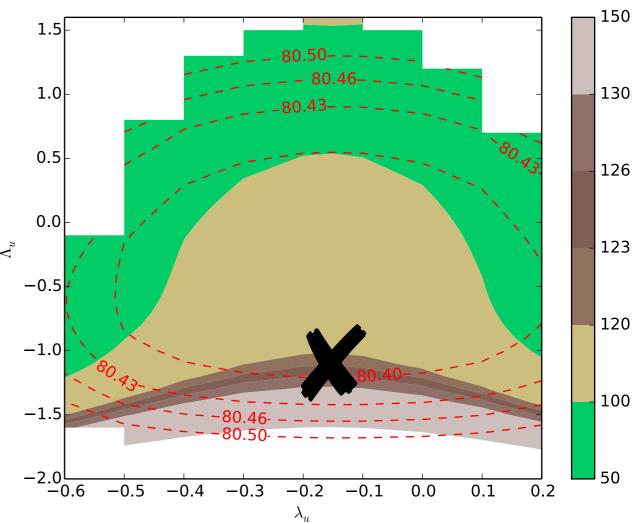
$$m_W^2 = \frac{1}{2} m_Z^2 \hat{\rho} \left[1 + \sqrt{1 - \frac{4\pi \hat{\alpha}_{EM}^{\overline{DR}, MRSSM}(m_Z)}{\sqrt{2} G_\mu m_Z^2 \hat{\rho} (1 - \Delta \hat{r}_W)}} \right]$$

Two effects in m_W increase

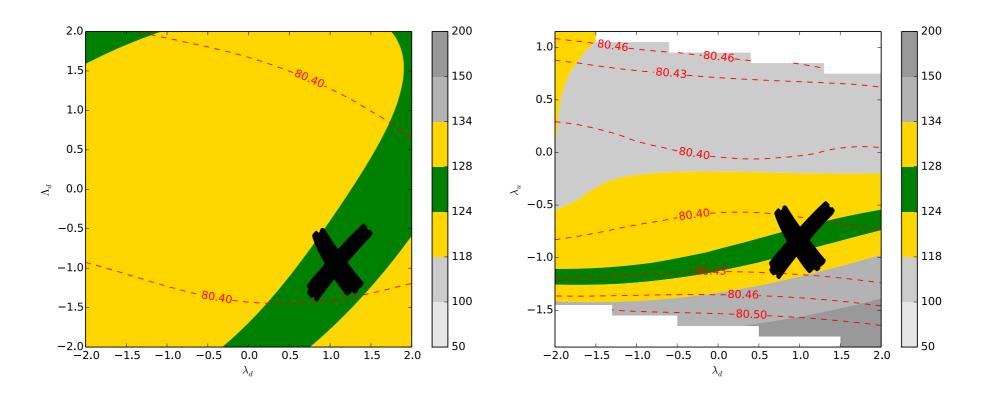
loop corrections to Π_{WW},Π_{ZZ}


Benchmark points properties

- \blacksquare 3 distinct parameter points with $an \beta = 3, 10, 50$ (on this talk only 3 and 50)
- lacktriangle within $1-2\,\sigma$ from experimentally measured W-boson mass (less if you add theoretical uncertainty)


$$m_W^{\rm exp} = 80.385 \pm 0.015 \text{ GeV}$$

- lightest Higgs mass around 125 GeV
- points in agreement with direct Higgs measurements [HiggsBounds, HiggsSignals]
- Due to the lack of A-terms R-symmetric models are generally safe as far as colourand charge-breaking minima are concerned Casas, Lleyda, Muñoz (1996)
- absolute vacuum stability [disclaimer: within the scope of application of Vevacious]
- reasonable TeV range mass spectra


$m_h - m_W$ interdependence for $\tan \beta = 50$

- □ **X** for benchmark point

$m_h - m_W$ interdependence for low $\tan \beta$

- $exttt{a}$ to see dependence on down-type parameters one needs to reduce aneta
- ${\tt a}$ even for aneta=3 dependence in very mild

Conclusions and outlook

- I presented a viable R-symmetric realisation of SUSY which
 - is in agreement with PEWO and flavour-physics constrains

 - mas interesting collider phenomenology to be explored
- We took the low energy model without discussing its UV completion
- Still a lot to do.... Consequences for 14 TeV LHC?

Back-up slides

Tools for numerical analysis

- Model implemented in **SARAH**
- Numerical analysis done within SARAH's generated SPheno-like code
- Cross checked with analytic calculation with FeynArts/FormCalc
- Higgs sector checked with **HiggsBounds** and **HiggsSignals**
- Vacuum stability checked with **Vevacious**

$SU(3)\beta$ function

$$\beta_{g_3}^{(1)} = 0$$

$$\beta_{g_3}^{(2)} = \frac{1}{5}g_3^3 \left(11g_1^2 - 20\text{Tr}\left(Y_d Y_d^{\dagger}\right) - 20\text{Tr}\left(Y_u Y_u^{\dagger}\right) + 340g_3^2 + 45g_2^2\right)$$