SUSY decays to Higgs bosons and their implications Federico von der Pahlen

U. Antioquia

in collaboration with A. Bharucha, S. Heinemeyer

SUSY 2014

Federico von der Pahlen, SUSY 2014

– p. 1/24

SUSY decays to Higgs bosons and their implications

- Introduction: EWkino searches at the LHC
 - $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production
 - bounds after LHC8
- Higgs effects
 - Realistic bounds
 - Projection to LHC13/14
 - CP-violating couplings
- Summary

- Largest production cross sections at the LHC: colored particles
- Direct $\tilde{\chi}^{\pm}/\tilde{\chi}^{0}$ production: LHC sensitive to lower masses
 - Golden EWkino channel: wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 3$ leptons $|\mu| > |M_2| > |M_1|$
 - if $m_{\tilde{\ell}} < m_{\tilde{\chi}_1^{\pm}} \Rightarrow$ most powerfull constraints (~ 700 GeV)

- Largest production cross sections at the LHC: colored particles
- Direct $\tilde{\chi}^{\pm}/\tilde{\chi}^{0}$ production: LHC sensitive to lower masses
 - Golden EWkino channel: wino-like $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow 3$ leptons $|\mu| > |M_2| > |M_1|$
 - if $m_{\tilde{\ell}} < m_{\tilde{\chi}_1^{\pm}} \Rightarrow$ most powerfull constraints (~ 700 GeV)
 - if $m_{\tilde{\ell}} > m_{\tilde{\chi}_1^{\pm}} \Rightarrow \text{most } WZ/Wh + E_t^{\text{miss}}$, 3 body decays
 - $|M_2| > |\mu| > |M_1| WZ/Wh + E_t^{
 m miss}$, 3 body decays,
 - $|M_2|$, $|M_1|$ > $|\mu|$: compressed spectra

- Interpretation of bounds
 - specific models (CMSSM, GMSB, etc.): Bounds on $\tilde{\chi}^{\pm}/\tilde{\chi}^{0}$ reflect searches for colored particles interpretation of results with more general assumptions difficult/impossible
 - Simplified Model Spectra (SMS) analysis: Derive bounds on maximal production cross sections × BR as function of particle spectra Allows interpretation of exclusion bounds in different models

However, assume $100\%~{\rm BR}$ to WZ or WH

EWino searches @LHC: (ATLAS, WZ, $3\ell + E_t^{\text{miss}}$)

 $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$

Assume:

- $m_{\tilde{\chi}_1^\pm} \simeq m_{\tilde{\chi}_2^0}$
- heavier sleptons

Exclusion limits for:

- gaugino-like $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$
- bino-like $\tilde{\chi}_1^0$
- $\mathsf{BR}(\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0) = 1$
- $\mathsf{BR}(\tilde{\chi}^0_2 \rightarrow Z \tilde{\chi}^0_1) = 1$

Simplified Model Spectra analysis: interpret carefully

 $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$

Assume:

- $m_{\tilde{\chi}_1^\pm} \simeq m_{\tilde{\chi}_2^0}$

- heavier sleptons
- Exclusion limits for:
 - gaugino-like $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$
 - bino-like $\tilde{\chi}_1^0$
 - including $(\tilde{\chi}^0_2 \rightarrow \tilde{\chi}^0_1 h_1)$

[Bharucha, Heinemeyer, FP]

 $[\mu \gg M_2 > M_1]$

– p. 7/24

Simple expressions for decay widths [for $\mu \gg M_2, M_1$, $\tan \beta \gg 1$]

$$\begin{split} C^L_{\tilde{\chi}^0_1 \tilde{\chi}^0_2 Z} &\approx \frac{e}{2} \frac{M_Z^2}{\mu^2} \exp\left(\frac{i\varphi_{M_1}}{2}\right) ,\\ C^L_{\tilde{\chi}^0_1 \tilde{\chi}^0_2 h_1} &\approx \frac{e}{2} \frac{M_Z}{\mu} \left(\frac{M_1 + M_2}{\mu} + \frac{4}{\tan\beta}\right) \exp\left(\frac{-i\varphi_{M_1}}{2}\right) , \end{split}$$

$$\Gamma^{\text{tree}}_{\tilde{\chi}^0_2 \to \tilde{\chi}^0_1 Z} \approx \frac{K(Z)}{\mu^2 / M_Z^2} \left(m_{\tilde{\chi}^0_2}^2 + m_{\tilde{\chi}^0_1}^2 - 2M_Z^2 + \frac{(m_{\tilde{\chi}^0_2}^2 - m_{\tilde{\chi}^0_1}^2)^2}{M_Z^2} + 6\cos(\varphi_{M_1}) m_{\tilde{\chi}^0_2} m_{\tilde{\chi}^0_1} \right) \ ,$$

$$\Gamma_{\tilde{\chi}_{2}^{0} \to \tilde{\chi}_{1}^{0} h_{1}}^{\text{tree}} \approx K(h_{1}) \left| \frac{M_{1} + M_{2}}{\mu} + \frac{4}{\tan \beta} \right|^{2} \left(m_{\tilde{\chi}_{2}^{0}}^{2} + m_{\tilde{\chi}_{1}^{0}}^{2} - m_{h_{1}}^{2} + 2\cos(\varphi_{M_{1}}) m_{\tilde{\chi}_{2}^{0}} m_{\tilde{\chi}_{1}^{0}} \right) ,$$

with $K(X) \propto \beta^*(\tilde{\chi}_1^0, \tilde{\chi}_2^0, X)$

- Higgs-neutralino $C^L_{\tilde{\chi}^0_1 \tilde{\chi}^0_2 h_1}$: depends on relative phases & $\tan \beta$
- $\varphi_{M_1} = \pi \Rightarrow$ p-wave suppr. \rightarrow thresh. dependence on relat. CP

Effect of including the Higgs channel (ATLAS limits)

 $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$ BR=1, $M_1>0$, $M_1<0$

[Bharucha, Heinemeyer, FP]

- Dramatic reductiion in sensitivity for $m_{ ilde{\chi}_2^0} m_{ ilde{\chi}_1^0} > m_{h_1}$
- Effect stronger for small $\tan\beta$ and $M_1 > 0$

Federico von der Pahlen, SUSY 2014

– p. 10/24

CMS@8 TeV, 19.5/fb CMS-SUS-13006

– p. 11/24

CMS@8 TeV, 19.5/fb CMS-SUS-13006 $\tan \beta = 6, M_1 > 0:$

• CMS $1 - 2\sigma$ excess $\Rightarrow WZ$ excludes

 $m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} < m_h$

CMS@8 TeV, 19.5/fb CMS-SUS-13006 $\tan \beta = 6, M_1 > 0:$

- CMS $1 2\sigma$ excess $\Rightarrow WZ$ excludes $m_{\tilde{\chi}_2^0} - m_{\tilde{\chi}_1^0} < m_h$
- $\Rightarrow Wh \text{ excludes}$ higher $m_{\tilde{\chi}_2^0}$

CMS@8 TeV, 19.5/fb CMS-SUS-13006

– p. 13/24

CMS@8 TeV, 19.5/fb CMS-SUS-13006

– p. 14/24

CMS@8 TeV, 19.5/fb CMS-SUS-13006

CMS@8 TeV, 19.5/fb CMS-SUS-13006

- only $\mu = -\tan\beta(M_1 + M_2)/4 \to BR(h_1)=0$
- higgsino prod.XS significantly weaker: we find no exclusion

EWino searches: Projections for LHC@13TeV

 $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$ Naive projection $(L_{int} = 100 \text{ fb}^{-1})$

Rescale exclusion for LHC8 by factor: $R_{13/8} = \sqrt{R_{\rm bkg}} \frac{L_{\rm LHC8}}{L_{\rm LHC13}}$, $R_{\rm bkg} = \frac{\sigma_{WZ}(13 \text{TeV})}{\sigma_{WZ}(8 \text{TeV})} \frac{L_{\rm LHC13}}{L_{\rm LHC8}} \Rightarrow R_{13/8} \approx \sqrt{2} \sqrt{\frac{21}{200}} \sim 35\%$,

Federico von der Pahlen, SUSY 2014

– p. 16/24

EWino searches: Projections for LHC@13TeV

 $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$ Naive projection $(L_{int} = 100 \text{ fb}^{-1})$

 ATLAS & CMS projections @14TeV 300 fb⁻¹: 95%CL exclusion up to 800 GeV very optimistic.

EWino searches: ATLAS Projections for LHC@14TeV

 $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to W \tilde{\chi}_1^0 h \tilde{\chi}_1^0 \quad (L_{int} = 300/3000 \text{ fb}^{-1})$

• WZ and $Wh + E_t^{\text{miss}}$ searches complementary, ideally, realistic limits require a combination

Federico von der Pahlen, SUSY 2014

Constraining the phase of M_1

- For larger $\tan\beta$ complementarity of EDM limits on ϕ_{M_1}
- Outlook: $\tilde{\chi}_i^0 \tilde{\chi}_j^0 h_k$ couplings \rightarrow determine relative CP-phases

Summary

- Electroweakino searches @ LHC: no realistic bounds & discovery reach projections
- Neutralino decays to Higgs bosons potentially most sensitive channel
- use SUSY Higgs interactions to constrain CP-phases
- similar issues for $\tilde{t}_2 \to \tilde{t}_1 h/Z$ (relevant for light \tilde{t}_1), $\tilde{b}_2(\tilde{\tau}_2) \to \tilde{b}_1(\tilde{\tau}_1)h/Z$ (relevant for large $\tan \beta$) $\tilde{\chi}_2^{\pm} \to \tilde{\chi}_1^{\pm}h/Z$ (heavy gauginos)

backup transparencies

Federico von der Pahlen, SUSY 2014

– p. 21/24

EWino searches: ATLAS exclusion limits

 $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow W \tilde{\chi}_1^0 Z \tilde{\chi}_1^0$ low- μ scenario $(M_1 < \mu \ll M_2)$

 $\sigma_{\tilde{\chi}_1^\pm \tilde{\chi}_2^0} \times BR_{\tilde{\chi}_2^0 \to \tilde{\chi}_1^0 Z}$ [fb]

- Complementarity of $\tilde{\chi}_2^0$ and $\tilde{\chi}_3^0$ decays (opposite CP behaviour)
- higgsino-Z couplings unsuppressed: larger BR to $Z\tilde{\chi}^0_1$

Federico von der Pahlen, SUSY 2014

– p. 22/24

RH stau-coannihilation scenario

Neutralino decay BR $ilde{\chi}^0_2
ightarrow \{Z, h_1\} ilde{\chi}^0_1, \quad ilde{ au}_1 au$

[Bharucha, Heinemeyer, FP]

– p. 23/24

Scenarios

Scenario	$arphi_{M_1}$	μ	aneta	$M_{\rm SUSY}$	$M_{ ilde{ au}_R}$
$S_{ m ATLAS}$	0	1000	6	2000	$M_{\rm SUSY}$
$S_{ m ATLAS}^{\varphi_{M_1}}$	$0\ldots\pi$	1000	6	2000	$M_{\rm SUSY}$
$S_{ m ATLAS}^{ aneta}$	0	1000	620	2000	$M_{\rm SUSY}$
S^{DM}	$0\ldots\pi$	1000	6,20	2000	$ M_1 $
$S_{\text{low}-\mu}$	0	$100 \dots 400$	6	2000	$M_{\rm SUSY}$

 $|M_1| = 0 \dots 200$ GeV, $M_2 = 100 \dots 400(500)$ GeV, $M_3 = 1.5$ TeV $S^{\rm DM}$: stau-coannihilation region, $\tilde{\tau}_1 \simeq \tilde{\tau}_R$