Next-to-leading order accuracy for production and decay of squarks

Mathieu PELLEN

Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen

arXiv:1305.4061, JHEP 10 (2013) 187 arXiv:1407.XXXX

In collaboration with: R. Gavin, C. Hangst, M. Krämer, M. Mühlleitner, E. Popenda & M. Spira

SUSY 2014 - Manchester

22nd July 2014

- Introduction
- Squark-antisquark production with decay
- Parton shower effect
- Impact of search cuts

Supersymmetry at the Large Hadron Collider Squark-antisquark production with decay Parton shower effect

Signature Road map Assumptions

• Supersymmetric particles decay via cascades

Squark-antisquark production with decay Parton shower effect Impact of search cuts Conclusion Signature Road map Assumptions

• Production of $\tilde{q}\tilde{q}$, $\tilde{q}\overline{\tilde{q}}$, $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$ and decays $\tilde{q} \rightarrow q + \tilde{\chi}_1^0$, $\tilde{g} \rightarrow q + \tilde{q}$...

... at NLO with parton shower

• <u>Aim</u>: Fully differential implementation in a Monte Carlo program (to analyse cuts, parton shower effects etc.)

Squark-antisquark production with decay Parton shower effect Impact of search cuts Conclusion Signature Road map Assumptions

- Matching Squark Pair Production at NLO with Parton Showers [1305.4061] see also [Hollik, Lindert, Pagani, 1207.1071] [Goncalves-Netto et al., 1211.0286]
 - K factor treatment
 - Parton shower effect
- Squark-antisquark production and decay at NLO matched with parton shower
- Gluino production and decay, spin effect, etc.

Squark-antisquark production with decay Parton shower effect Impact of search cuts Conclusion Signature Road map Assumptions

Standard procedure:

- LO distribution
- Global K-factor from $\operatorname{PROSPINO2}$

[Beenakker, Hopker, Krämer, Plehn, Spira, Zerwas]

• Rescale the LO distribution by the global K-factor

Problems:

- Assume degenerate squark masses
- Assume no shape distortion in LO / NLO distributions

Squark-antisquark production with decay Parton shower effect Impact of search cuts Conclusion Signature Road map Assumptions

• Non flat K-factor for squark pair production

How?

Squark-antisquark production Addition of the decay

- No spin correlation has to be taken into account.
- Narrow-width approximation i.e. intermediate particle is on-shell.
- Only first two generations of squarks.
- Implementation in the POWHEG-BOX

[Nason, hep-ph/0409146], [Frixione, Nason, Oleari, 0709.2092], [Alioli, Nason, Oleari, Re, 1002.2581]

How? Squark-antisquark production Addition of the decay

Process	$\sigma_{\rm LO}[{\rm fb}]$	$\sigma_{\rm NLO}[{\rm fb}]$	K-factor
$\tilde{u}_L \overline{\tilde{u}}_L$	$9.51 \cdot 10^{-2}$	$1.43\cdot 10^{-1}$	1.50
$\tilde{u}_R \overline{\tilde{u}}_R$	$1.14 \cdot 10^{-1}$	$1.72\cdot 10^{-1}$	1.51
$\tilde{d}_L \bar{\tilde{d}}_R$	$1.41 \cdot 10^{-1}$	$1.70\cdot 10^{-1}$	1.21
$\tilde{u}_R \bar{\tilde{d}}_L$	$2.94\cdot10^{-1}$	$3.49\cdot10^{-1}$	1.19
ũ _R a _R	$8.36 \cdot 10^{-2}$	$9.54 \cdot 10^{-2}$	1.14
	$\tilde{a} = \tilde{a}^{c1}$	a. ĝ	c

How? Squark-antisquark production Addition of the decay

Two different methods:

- Analytical integration [Campbell, Ellis, Tramontano, hep-ph/0408158]
- V2 of POWHEG BOX for resonant decay (FKS scheme)

[Frixione, Kunszt, Signer, hep-ph/9512328]

How? Squark-antisquark production Addition of the decay

Distributions including decay

Supersymmetry at the Large Hadron Collider Parton shower effect

12 / 16

Approximate method Results

ATLAS collaboration, signal region 'A-loose' [ATLAS-CONF-2013-047].

$$\Delta \phi(j_{1/2}, ec{E}_{T}) > 0.4, \quad \Delta \phi(j_{3}, ec{E}_{T}) > 0.4 \quad ext{if} \quad p_{T}^{j_{3}} > 40 \ ext{GeV} \,.$$

with $m_{\text{eff}}^{\text{incl}} = \sum_{i=1}^{n_j} p_T^{j_i} + \not \in_T$ <u>Procedure</u>:

- Simulation of the production and decay at LO
- Rescaled with global K-factor
- Multiplication with the NLO branching ratio

Approximate method Results

	q̃q	q¯	
NLO	0.871 fb	0.0781 fb	
Pythia	0.883 fb	0.0797 fb	
HERWIG++	0.895 fb	0.0807 fb	
PYTHIA (approx.)	0.855 fb	0.0664 fb	
HERWIG++ (approx.)	0.858 fb	0.0667 fb	

10.3.6* scenario: $m_{\tilde{\chi}_0^1} \simeq 290 \text{GeV}, \ m_{\tilde{q}} \simeq 1800 \text{GeV}, \ m_{\tilde{g}} \simeq 1600 \text{GeV} \text{ and } \sqrt{s} = 8 \text{TeV}$

Summary

- Production of $\tilde{q}\tilde{q}$ and $\tilde{q}\tilde{\bar{q}}$ at NLO ...
 - ... with decay $ilde{q}
 ightarrow q + ilde{\chi}_1^0$ at NLO ...
 - ... matched with parton shower
- Importance of a full treatment
- \bullet Implementation in the $\operatorname{POWHEG}\,\operatorname{BOX}$
- Public code that can be downloaded at:

http://powhegbox.mib.infn.it/

Outlook

- $\tilde{q}\tilde{g}$ and $\tilde{g}\tilde{g}$ production at NLO
- $\bullet~\tilde{g}$ decay at NLO
- Spin effect

Thank you for your attention

Back up

	10.3.6*		10.4.5	
	q̃q	q̄q	q̃q	q̄q
NLO	0.871 fb	0.0781 fb	6.809 fb	0.696 fb
Pythia	0.883 fb	0.0797 fb	6.854 fb	0.704 fb
HERWIG++	0.895 fb	0.0807 fb	6.936 fb	0.711 fb
PYTHIA (approx.)	0.855 fb	0.0664 fb	6.844 fb	0.617 fb
HERWIG++ (approx.)	0.858 fb	0.0667 fb	6.876 fb	0.620 fb

Back up

• Subtraction for on-shell intermediate state.

$$|M_{qg}|^2 = |M_{nr}|^2 + |M_r|^2 + 2\text{Re}[M_r M_{nr}^*].$$

For
$$(p_{\overline{q}}+p_{\widetilde{q}})^2
ightarrow m_{\widetilde{g}}^2$$

Back up Production \times Decay @ NLO

$$\begin{split} dP_{i,j} &= \frac{1}{\Gamma_{tot}^{0}\Gamma_{tot}^{(j)}} \left(d\sigma_0 d\Gamma_0^i d\Gamma_0^{\prime j} \left(1 - \alpha_s \left(\frac{\Gamma_{tot}^i}{\Gamma_{tot}^0} + \frac{\Gamma_{tot}^{\prime j}}{\Gamma_{tot}^{\prime 0}} \right) \right) + \alpha_s d\sigma_0 \left(d\Gamma_0^i d\Gamma_1^{\prime j} + d\Gamma_0^{\prime j} d\Gamma_1^i \right) + \alpha_s d\sigma_1 \left(d\Gamma_0^j d\Gamma_0^{\prime j} \right) \right) \\ dP_{i,j} &= \frac{1}{\left(\Gamma_{tot}^0 + \alpha_s \Gamma_{tot}^1 \right) \left(\Gamma_{tot}^0 + \alpha_s \Gamma_{tot}^1 \right)} \left[d\sigma_0 d\Gamma_0^j d\Gamma_0^{\prime j} + \alpha_s \left(d\sigma_0 \left(d\Gamma_0^i d\Gamma_1^{\prime j} + d\Gamma_0^{\prime j} d\Gamma_1^i \right) + d\sigma_1 d\Gamma_0^i d\Gamma_0^{\prime j} \right) \right] \\ dP_{i,j} &= \left(d\sigma_0 + \alpha_s d\sigma_1 \right) \frac{\left(d\Gamma_0^j + \alpha_s d\Gamma_1^i \right)}{\left(\Gamma_{tot}^0 + \alpha_s \Gamma_{tot}^1 \right)} \frac{\left(d\Gamma_0^{\prime j} + \alpha_s d\Gamma_1^{\prime j} \right)}{\left(\Gamma_{tot}^{\prime \prime} + \alpha_s \Gamma_{tot}^1 \right)} \frac{\left(d\Gamma_0^{\prime j} + \alpha_s d\Gamma_1^{\prime j} \right)}{\left(\Gamma_{tot}^{\prime \prime} + \alpha_s \Gamma_{tot}^1 \right)} \frac{\left(d\Gamma_0^{\prime j} + \alpha_s d\Gamma_1^{\prime j} \right)}{\left(\Gamma_{tot}^{\prime \prime} + \alpha_s \Gamma_{tot}^1 \right)} \end{split}$$

19 / 16

Back up Production \times Decay @ NLO

Back up Production @ LO

Squark-antisquark production at LO.