

B decays to τ leptons at Belle $B \rightarrow \tau v / D \tau v$

Toru lijima Nagoya University

September 15, 2010 Tau 2010 @ Manchester

Take Outline

- Introduction
- Purely leptonic decay $B \rightarrow \tau v$
- Semileptonic decay $B \rightarrow D^{(*)} \tau v$
- Prospects
- Summary

τ as a probe to New Physics in B decays.

Charged Higgs in b $\rightarrow \tau$

- Extensions of the SM, which require >2 Higgs doublets, generate new flavor-changing interactions at tree-level via exchange of a charged Higgs.
- The H⁺ coupling is proportional to the fermion mass, and it is natural to look at (semi-)leptonic B decays into a τ in the final state.

 $B \rightarrow \tau$ transition (MSSM)

$$\mathcal{H}^{\mathsf{eff}} = 2\sqrt{2} \, G_F \, V_{qb} \big\{ (\overline{b}_L \, \gamma^\mu \, q_L) \, (\overline{\nu}_L \, \gamma_\mu \, \tau_L) - \frac{m_b m_\tau}{m_B^2} g_S \, (\overline{b}_R \, q_L) \, (\overline{\nu}_L \, \tau_R) \big\};$$

Effective scalar coupling;

$$g_S = \frac{M_H^2 \tan^2 \beta}{M_H^2} \frac{1}{(1 + \varepsilon_0 \tan \beta)(1 - \varepsilon_\tau \tan \beta)},$$

SUSY Loop correction $\epsilon_0 = \epsilon_\tau = 0$ in Type-II 2HDM

$B \rightarrow \tau \overline{\nu}$ (in SM)

* Helicity suppression $Br(B \rightarrow e \nu) \quad 10^{-11}$ $Br(B \rightarrow \mu \nu) \quad 10^{-7}$ $Br(B \rightarrow \tau \nu) \quad 10^{-4}$

Within SM, proceed via W annihilation.

$$\mathcal{B}(B^{-} \to \ell^{-}\bar{\nu}) = \frac{G_{F}^{2}m_{B}m_{\ell}^{2}}{8\pi} \left(1 - \frac{m_{\ell}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} |V_{ub}|^{2} \tau_{B}$$
From $f_{B}|V_{ub}|$

$$f_{B} = 190 \pm 13 \, MeV \quad \overset{\text{HPQCD,}}{_{0902.1815v2}} |V_{ub}| = (4.32 \pm 0.16 \pm 0.29) \times 10^{-3} \overset{\text{HFAG}}{_{\text{ICHEP08}}} \implies Br_{SM}(\tau\nu) = (1.20 \pm 0.25) \times 10^{-4}$$
From $GVOA \, \text{fit} \, (wala, D, \lambda) \quad \text{in the a input}$

From CKM fit (w/o $B \rightarrow \tau v$ in the input)

 $Br_{CKM fit}(\tau v) = (0.763^{+0.113}_{-0.061}) \times 10^{-4}$ CKM fitter @ ICHEP2010 $Br_{CKM fit}(\tau v) = (0.805 \pm 0.071) \times 10^{-4}$ UT fit @ ICHEP2010 4

Charged Higgs Effect in $B \rightarrow \tau v$

Charged Higgs exchange interferes with the helicity suppressed W-exchange.

The Br becomes larger or smaller;

- Br = Br_{SM} × r_H, r_H = $|1 g_s|^2$ Type-II 2HDM Br = Br_{SM} × r_H, r_H = $\left(1 - \frac{m_B^2}{m_H^2} \tan^2 \beta\right)^2$ $I = \frac{1}{2} \int_{0}^{1} \frac{1}{1 - \frac{m_B^2}{\tan^2 \beta}} \int_{0}^$
- If $\mu\nu$ is also measured, lepton universality can be tested. \rightarrow SUSY correction etc.

Analysis for $B \rightarrow \tau v$

Belle $B \rightarrow \tau v$ w/ Hadronic Tag

449M BB

PRL 97, 251802 (2006)

 B_{tag} reconstruction;

$$B^{+} \rightarrow \overline{D}^{(*)0} + \pi^{+} / \rho^{+} / a_{1}^{+} / D_{S}^{(*)+}$$
$$\downarrow \overline{D}^{0} \pi^{0} / \overline{D}^{0} \gamma \qquad \downarrow D_{s}^{+} \gamma$$

$$M_{bc} = \sqrt{E_{beam}^2 - (\sum_{i} \vec{p}_i)^2} \quad \Delta E = \sum_{i} E_i - E_{beam}$$

Signal region : -0.08 < ΔE < 0.06 GeV,
 $M_{bc} > 5.27 \text{ GeV/c}^2$

$$N_{S} = 24.1_{-6.6}^{+7.6} (stat)_{-6.3}^{+5.5} (syst)$$

in all E_{ECL} region.

 3.5σ (incl. syst.)

Candidate Event

$$B^{+} \rightarrow \overline{D^{0}} \pi^{+}$$

$$\downarrow K^{+} \pi^{-} \pi^{+} \pi^{-}$$

$$B^{-} \rightarrow \tau^{-} \nu$$

$$\downarrow e^{-} \nu \nu$$

Belle $B \rightarrow \tau v$ w/ Semileptonic Tag

Constraint on Charged Higgs

Comparison to CKM fit

The measured Br is ~2.8 σ higher than the value predicted by the CKM fit.

$B \rightarrow D \tau v$

 $B \rightarrow D \tau v$ is another process sensitive to the charged Higgs, and complementary to $B \rightarrow \tau v$.

- Relatively large Br ~0.8%
- Different theory systematics:
 - free from V_{ub} and f_B ambiguity.
 - depends on the B→D form factors,
 which can be deduced from D I v data.

- Three-body decay permits the study of decay distributions which discriminate between W+ and H+ exchange. Also T polarization in $\tau \rightarrow \pi \nu$ mode.
- Universality between H-b-c, ($D\tau\nu$), H-b-u ($\tau\nu$), H-b-t (LHC).

Belle $B \rightarrow D^{(*)} \tau \nu$

- Inclusive B_{tag} reconstruction.
 - Calculate B_{tag} mass using 4 momentum vector of the tracks other than D* and (e, μ, π).

535MBB

PRL 99, 191807 (2007)

 $N_{\rm S} = 60^{+12}_{-11}$

 6.7σ (5.2σ w/ systematic)

First Observation

Belle B→D* τ ν (2010)

5

- Simultaneous extraction of signals in $B^+ \rightarrow D^{*0}\tau^+\nu$ and $B^+ \rightarrow D^{0+}\tau^+\nu$ taking into account $D^{*0} <-> D^0$ cross-feeds.
- Signal extraction from fit to 2-dim distributions in M_{tag} and P_D^0 (momentum of D^0 in Y(4S) rest frame).
- Simultaneous fit to 13 decay chains with floating 2 signal BFs and 13 background normalizations

$B \rightarrow D \tau v w / Hadronic Tag$

RELLE

ivents / 0.4 GeV²/c⁴

30

20

10

-2

0

2

- 657M BB
- Hadronic tags.
- Extract signals in (MM², E_{FCL}) distribution.
- Simultaneous extraction of $D\tau v/D^*\tau v$.

16

$B \rightarrow D^{(*)} \tau \nu$ Summary

Constraint on Charged Higgs

experimental bounds on tan β/m_H in type-II 2HDM from averaged Belle and BaBar measurements¹⁰ of $R = \frac{\mathcal{B}(B \to D\tau \nu_{\tau})}{\mathcal{B}(B \to Dl \nu_l)} = 0.40 \pm 0.08$

M. Tanaka, R. Watanabe, arXiv:1005.4306

Prospect

- Results using the full data set (~770MB \overline{B})
 - Present results: w/ 449M BB for hadronic tag w/ 657M BB for semileptonic tag
 - Reprocessed with improved tracking efficiency
- Improvement for the hadronic tag

→ effective luminosity improved by factor x2

Prospect at Super-KEKB / Belle II

KEKB upgrade has been approved.

- 5.8 oku yen(MUSD) for damping ring (FY2010)
- 100 oku yen for machine.

"Very Advanced Research Support Program" (FY2010-2012)

Construction started !

Summary

- **B** decays to the τ lepton final states, $B \rightarrow \tau v$ and $B \rightarrow D \tau v$, are unique probe to New Physics.
- **Belle has measured both** $B \rightarrow \tau v$ and $B \rightarrow D \tau v$ decays.
 - $B \rightarrow \tau v w$ / hadronic and semileptonic tags.
 - $B \rightarrow D\tau v w$ inclusive and hadronic tags.

Results using the full data set and improved tagging efficiency will come in the near future.

Super-KEKB/Belle II will provide results with a few percent error, and will provide stringent test of NP.

Cont'd

U. Nierste, S. Trine, S.Westhoff PRD78, 015006 (2008).

