Heavy flavour meson decays with tau leptons in the final state at BaBar

•First measurements for $B \rightarrow K \tau \tau$ using Hadronic Tag Method •Latest measurements for $B \rightarrow \tau \nu$ using Hadronic Tag Method

Malachi Schram McGill University

on behalf of the Babar Collaboration

First measurements for B→K⊤⊤ using Hadronic Tag Method

B→KTT Standard Model

★Br(B→X_s $\tau^+\tau^-$) expected to be comparable to Br(B→X_s I⁺I⁻) in high q² region ★Exclusive B→K $\tau^+\tau^-$ predicted to be 50-60% of total inclusive rate, that is ~2x10⁻⁷ With the Y(4s) full Babar dataset we expect ~100 evts

 10^{-3} 10^{-4} 10^{-4} 10^{-4} 10^{-5} 10^{-5} $X_{s}e^{+}e^{-}$ $X_{s}\tau^{+}\tau$

0.4

 $\hat{s} = q^2/m_b^2$

0.6

0.8

 $\ell\,$ = τ (solid and dashed curves) and $\,\ell\,$ = e (dotted and dash-dotted curves)

D. Du, C. Liu, and D. Zhang, "Rare decay KT+T- in heavy meson chiral perturbation theory", Phys. Lett. B317, 179 (1993).
 J. Hewett, "Tau polarization asymmetry in B -> X(s) tau+ tau-.", Phys. Rev. D53, 4964-4969 (1996)

10-8

0.2

$B \rightarrow K \tau^+ \tau^-$ New Physics Contributions

 In the Standard Model, FCNC transitions are forbidden at tree level
 Processes occurs via one-loop diagrams, as shown in Figure 1, albeit at a very small rate

Sensitive to modifications in their rates from New Physics (NP)

- Diagrams will be altered depending on the new physics
- The NMSSM rate enhancements is proportional to $(m_{\tau}/m_{\mu})^2 \sim 280$

Analysis Overview

◆2-4 neutrinos originating from tau decay

♦One fully reconstructed B-meson improves background rejection and provides q² calculation

Remaining tracks and clusters provide "signal" variables after removing those used for the fully reconstructed B-meson

Considering 3 one-prong tau decays
Looking for a 3 charged track and no activity in the calorimeter!

Hadronic Tag Efficiency Correction

✦Hadronic tag is seeded by B→D^(*)+X, where X is a combination of pions and kaons
✦In the case of multiple B candidates select the one with the smallest |∆E|
✦Estimate the continuum background using

data sideband and MC ratio:

$$N_{SR}^{comb} = R^{MC} \times N_{SB}^{data} = \frac{N_{SR}^{MC}}{N_{SB}^{MC}} \times N_{SB}^{data}$$

The "Peaking" component is estimated using B⁺B⁻ MC
Efficiency Correction is K_{tag}=0.909±0.029

Signal Selection

✦Continuum backgrounds are suppressed using $|\cos\theta_T|$, the cosine of the opening angle between the tag-B thrust and the rest-of-the-event thrust

- ✦Require exactly 3 tracks
- ♦One Charged Kaon
 - •Charge opposite that of the tag-B
 - •Momentum between 0.44-1.4 GeV/c
- Two oppositely charged tracks

•Momentum of track with the charge opposite that of the tag-B must be < 1.59 GeV/c

- •Mass of track pair < 2.89 GeV/c²
- ✦Momentum Transfer: q² < 14.23 GeV²
- Missing Energy: 1.39 < E_{miss} < 3.38 GeV</p>
- Extra neutral energy < 0.74 GeV</p>
- ♦Invariant mass of the M(Kπ) > 1.96 GeV/c² to remove largest backgrounds from B→D+X decays

Curtomotic Q Desults		1.1.07
<u>Systematic & Results</u>	B-counting (δN_{BB})	1.1 %
	Tag-B Efficiency Correction $(\delta \kappa_{tag})$	3.17~%
	Signal Efficiency $(\delta \epsilon_{sig})$	14.81~%
	Signal Monte-Carlo Statistics	13.87~%
Several control samples (double	Particle Identification	5.06~%
tagged) are defined to validate/correct	Charged Tracks	0.74 %
	Extra Charge Track Veto	0.45%
key discriminating variables	Extra Neutral Cluster Energy	0.83 %
◆ Expected 64 67+7 25	Background Estimation (δN_{bkg}) Type	
	Combinatoric Ratio from Data/MC Check Combinatoric	10.73 %
Measured 47 events	Data m_{ES} Sideband Statistics Combinatoric Particle Identification Realing	10.21 % 5.06 %
$A = P_{\mu}(P \rightarrow V = T) < 0.22\%$	Charged Tracks Peaking	0.74 %
$\bullet DI(D \rightarrow K I I) < 0.33\%$	Extra Charge Track Veto Peaking	0.45%
	Extra Neutral Cluster Energy Peaking	0.83 %
	Shape Estimation from Combinatoric Mixture Both	7.37~%
€0.015⊢ — Central Value	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	אן יייין י -
Y = ■ Barlow (w/ Syst.) @ 90% C.L. Upper Limit A state of the system of the		around -
Feldman-Cousins (w/o Syst.) @ 90% C.L. Upper Limit		
0.01 - 0.01	Babar Prelim	inary -
		-
0.005		-
	╡ <u></u> <u></u>	_
Babar Prelin		
		╷╫╻╴╴╴╴
45 50 55 60 65 70 75	80 85 13 14 15 16 17 18 19	20 21
	N _{obs} q ²	[GeV ² /C ³]

Latest measurements for B→TV using Hadronic Tag Method

B→TV Standard Model

 \bullet Can measure f_B assuming a V_{ub}

 $\mathbf{A}_{V_{ub}}$ measure (exp.+theory) and f_B (theory) uncertainties dominate the SM expectation uncertainty

• $V_{ub} = (3.5 \pm 0.4) \times 10^{-3}$, UTFit and CKM fitter collaborations

• $f_B = (190\pm13)$ MeV, HPQCD collaboration arXiv:0902.1815v2

•Br($B \rightarrow \tau v$)_{SM}= (0.80±0.20)×10⁻⁴

B→TV New Physics Contributions

♦New physics, such as the Charge Higgs, can contribute at tree level
♦This leads to modifications in the branching fraction which is model dependent
♦Consequently, the Br(B→TV) measurement allows us to place exclusion limits on various NP models

◆Example of modification:

$$\mathcal{B}(B \to l\nu)_{2HDM} = \mathcal{B}(B \to l\nu)_{SM} \times (1 - tan^2\beta \frac{m_B^2}{m_H^2})^2$$

W. S. Hou, Phys. Rev. D 48 (1993) 2342.

Previous Measurements

BABAR Hadronic tags ${\cal B}(B o au
u) = (1.8^{+0.9}_{-0.8}({
m stat.}) \pm 0.4 \pm 0.2) imes 10^{-4}$

BABAR Semi-leptonic tags $\mathcal{B}(B \to \tau \nu) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$

BELLE Hadronic tags $\mathcal{B}(B \to \tau \nu) = (1.79^{+0.56}_{-0.49} (\text{stat.})^{+0.46}_{-0.51}) \times 10^{-4}$

BELLE Semi-leptonic tags $\mathcal{B}(B \to \tau \nu) = (1.54^{+0.38}_{-0.37}(\text{stat.})^{+0.29}_{-0.31}) \times 10^{-4}$ Phys. Rev. D 77, 011107(R) (2008)

Phys. Rev. D 81,051101(R) (2010)

Phys. Rev. Lett. 97, 261802 (2006)

arXiv:1006.4201[hep-ex]

Theory

•Br($B \rightarrow \tau \nu$)_{SM}= (0.80±0.20)×10⁻⁴

Analysis Overview

 ◆2-3 neutrinos originating from leptonic W boson decay and tau decay

 \blacklozenge One fully reconstructed B-meson

Remaining tracks and clusters provide "signal" variables

Considering 4 one-prong tau decays

Looking for a single charged track and no activity in the calorimeter!

Hadronic Tag Efficiency Correction

 \bigstar Hadronic tag seed by $B \rightarrow D(*) + X$ and Events 40000 $B \rightarrow J/\psi + X$, where X is a combination of pions and kaons Z35000 In case of multiple B candidates select the 30000 "best" candidate 25000 Fit using a Crystal Ball+ 2 Argus 20000 \bullet Crystal Ball to estimate the correctly 15000 reconstructed Bs 10000 Double Argus to estimate the 5000 combinatorial background **\bullet**Efficiency correction is $\kappa_{tag} = R = 0.926 \pm 0.046$

$$\epsilon_{sig,data} = R \times \epsilon_{sig,MC}$$
$$R = \frac{\epsilon_{B+B^-,data}}{\epsilon_{B+B^-,MC}}$$

Signal Selection

Combinatorial and continuum backgrounds are reduced using a likelihood ratio

 \clubsuit Require on charged track with charge opposite to that of the tag-B

Exploit kinematics in the signal side

İ.Requirement on CM momentum for $\tau^{\pm} \rightarrow e^{\pm} \nu \nu$, $\tau^{\pm} \rightarrow \mu^{\pm} \nu \nu$, and $\tau^{\pm} \rightarrow \pi^{\pm} \nu$ modes

II. For $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$, combine 4 variables in a Likelihood ratio The most discriminating variable is the remaining energy in the calorimeter "Eextra"; this is defined as the sum of calorimeter energy using clusters with more than 60 MeV of energy.

Fit Strategy

Branching Fraction (BF) is determined using an un-binned maximum likelihood fit
Simultaneously fit for a common BF
Signal PDFs are taken from MC and corrected for any MC/data disagreements
Background PDFs are taken from: i.Data sideband for combinatoric ii.B⁺B⁻ MC for "peaking" component

$$\mathcal{L}_{k} = e^{-(n_{s,k} + n_{b,k})} \prod_{i=1}^{N_{k}} \left\{ n_{s,k} \mathcal{P}_{k}^{s}(E_{i,k}) + n_{b,k} \mathcal{P}_{k}^{b}(E_{i,k}) \right\}$$
$$n_{s,k} = N_{B\overline{B}} \times \epsilon_{tag} \times \epsilon_{reco,k} \times BF$$

Validating Eextra

 \bullet We use double tag samples to validate the Eextra variable

Decay Mode	$\epsilon \times 10$	Drahening Fraction (×10) Significand
$\tau^+ \to e^+ \nu \bar{\nu}$	2.97	$0.39^{+0.89}_{-0.79}$	0.5
$\tau^+ o \mu^+ \nu \bar{\nu}$	3.20	$1.23_{-0.80}^{+0.89}$	1.6
$\tau^+ o \pi^+ \nu$	1.71	$4.0^{+1.5}_{-1.3}$	3.3
$ au^+ o ho^+ u$	0.93	$4.3^{+2.2}_{-1.9}$	2.6
combined	8.81	$1.80^{+0.57}_{-0.54}$	3.6

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$$

<u>Conclusion</u>

♦ New preliminary measurement on the search for the B→KTT process
 to the full BABAR dataset using an hadronic B tagging algorithm
 ♦ The upper limit at 90% C.L. is:

$$\mathcal{B}(B^+ \to K^+ \tau^+ \tau^-) < 0.33\%$$

◆Updated the B→TV branching fraction measurement to the full BABAR dataset using an hadronic B tagging algorithm
 ◆New branching fraction is:

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = (1.80^{+0.57}_{-0.54} \pm 0.26) \times 10^{-4}$$

The combined Babar results is

$$\mathcal{B}(B^+ \to \tau^+ \nu_\tau) = (1.76 \pm 0.49) \times 10^{-4}$$