The 11th International Workshop on Tau Lepton Physics Manchester, UK, 13–17 September 2010

The University of Manchester

Search for CP-violation in tau lepton decays at Belle

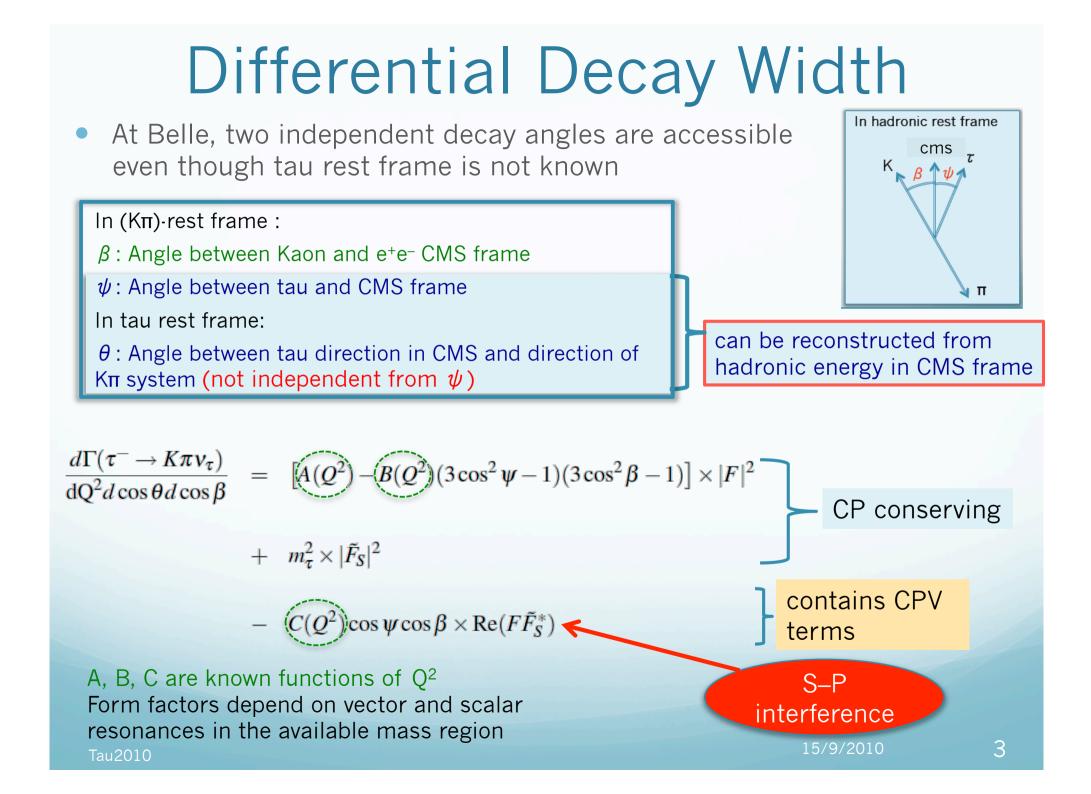
Markus Bischofberger Nara Women's University

CPV in $\tau \rightarrow \nu K_{S}\pi$

- In the Standard Model CP violation is generally forbidden in the leptonic sector but could be introduced by New Physics such as multi-Higgs models
- Hadronic current describing decay:

$$J_{\beta} = \langle h_{1}(q_{1})h_{2}(q_{2})|\bar{u}\gamma_{\beta}d|0 \rangle$$

$$= (q_{1}-q_{2})^{\delta}(g_{\delta\beta} - \frac{Q_{\delta}Q_{\beta}}{Q^{2}})F(Q^{2}) + Q_{\beta}F_{S}(Q^{2})$$
Form factors **F** and **F**_s
(vector and scalar)
ntroduce Higgs exchange by:


$$F_{S}(Q^{2}) \rightarrow \tilde{F}_{S}(Q^{2}) = F_{S}(Q^{2}) + \frac{\eta_{S}}{m_{\tau}}F_{H}(Q^{2})$$
CP: $\eta_{S} \rightarrow \eta^{*}_{S}$

Try to determine CPV Parameter: $Im(\eta_S)$

 Current Limits (CLEO): -4.1 < Im(η_s) < 1.6 [PRL88,111803(2002), hep-ex/0111095]

Tau2010

2

CPV asymmetry measurement

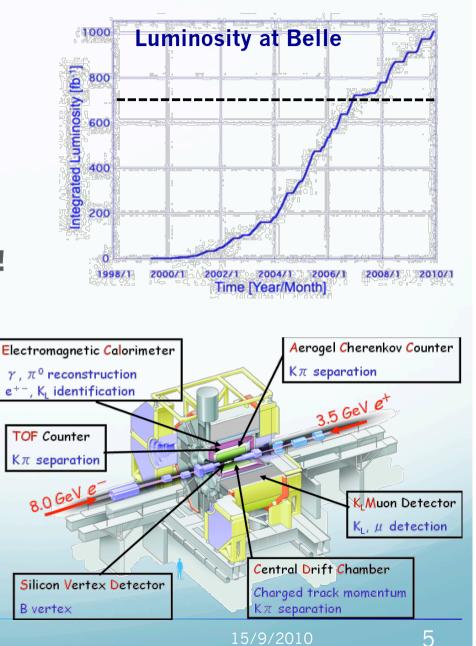
$$\Delta \equiv \left(\frac{d\Gamma(\tau^{-})}{d\Pi} - \frac{d\Gamma(\tau^{+})}{d\Pi}\right) = \operatorname{Im}(\eta_{S}) \times C'(Q^{2}) \times \frac{\operatorname{Im}(FF_{H}^{*})}{m_{\tau}} \times \cos\beta \cos\psi$$
$$(d\Pi = dQ^{2}d\cos\theta d\cos\beta)$$

- proportional to $Im(\eta_s)$
- proportional to Im(FF*_H)
 - requires $Im(FF_{H}) \neq 0$ (expected from measured K_S π mass spectrum as shown later)
 - need parameterization of form factors to extract CPV parameter Im(η_s)
- need to measure angles β , ψ
 - effect vanishes if integrated over angles \rightarrow no CPV in K_S π mass spectrum or branching ratio

To measure CPV, define asymmetry in bins of Q^2 :

$$\begin{split} A_{\beta\psi}^{CP} &= \frac{1}{\Gamma_{Q^2}} \int_{Q_1^2}^{Q_2^2} \underbrace{\cos\beta\cos\psi\cdot\Delta\cdot\mathrm{d}Q^2d\cos\theta d\cos\beta}_{\propto\cos^2\beta\cos^2\psi} & \left(\Gamma_{Q^2} = \int_{Q_1^2}^{Q_2^2} \frac{d\Gamma(\tau^{\pm})}{dQ^2} dQ^2\right) \\ \text{experimentally, measure } \tau^{+}/\tau^{-} \text{ separately in bins of } Q^2: \end{split}$$

Tau2010


exp

KEKB and **Belle**

KEKB: e⁺(3.5GeV) e⁻(8GeV)
 σ(BB)≈1.1nb, σ(τ⁺τ⁻)≈0.9nb
 a B-Factory is also a tau factory
Very high Luminosity
 peak luminosity:
 2.11 x 10³⁴cm⁻¹s⁻¹ = World record!
 integrated Luminosity:
 >1000 fb⁻¹ → ~10⁹ τ -pairs

Belle detector

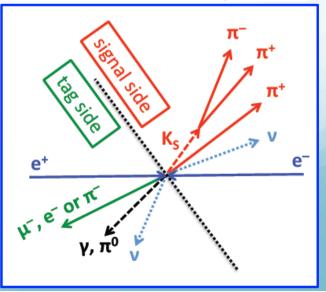
- F/B asymmetric detector
- good vertex resolution and particle identification

Event selection $\tau \rightarrow \nu K_{S}\pi$

$\tau + \tau -:$

Almost all τ decay into 1 or 3 charged particles (99.9%)

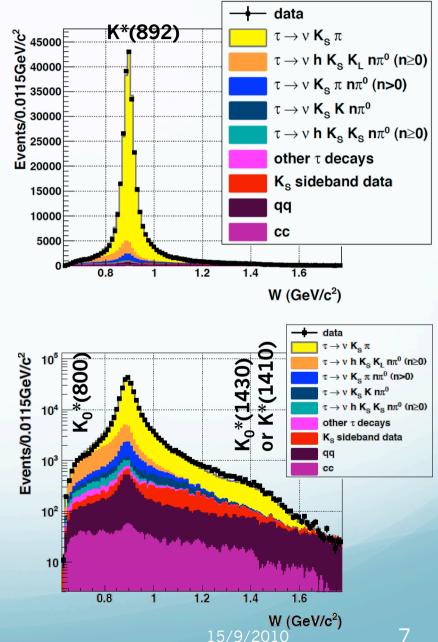
- low multiplicity: 2, 4 or 6 charged particles
- neutrinos cannot be detected
 → missing momentum: missing mass and polar angle θ_{cms}


Define 2 Hemispheres (signal/tag side) using thrust axis

• one lepton or pion on tag side

Event classification:

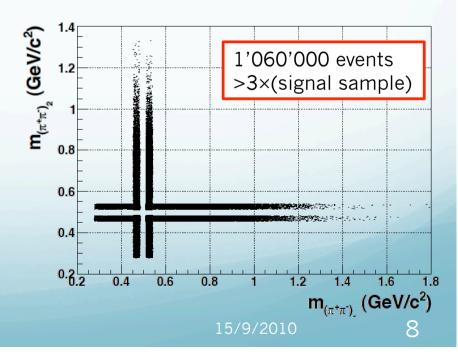
- π[±] from primary vertex
- K_s from compatible secondary vertices
 - select events with $\pi^+\pi^-$ mass in [485MeV 511MeV]
 - decay length > 2cm
- Veto against additional charged tracks, π^{0} and gammas



Tau2010

K_Sπ mass spectrum

- data: 700fb⁻¹
 - 325000 reconstructed events
- Background:
 - total: 23.4%
 - mainly from other τ decay modes:
 - $\tau \rightarrow \nu \text{ K}_{\text{S}}\text{K}_{\text{L}}\pi$: 9.5%
 - $\tau \rightarrow \nu \text{ K}_{\text{S}} \text{mm}^{0}$: 3.7%
 - qq: ~3.5%
- Resonances spectrum:
 - Dominant peak from vector resonance K*(892)
 - Contribution from scalar resonances K₀*(800) and K₀*(1430) (or vector K*(1410))



Control sample

Before measuring CPV in $\tau^{\pm} \rightarrow \nu K_{S}\pi^{\pm}$ mode, we determine main systematic error from data using a control sample

- $\tau^{\pm} \rightarrow \nu K_{\rm S} \pi^{\pm}$ (with $K_{\rm S} \rightarrow \pi^{+} \pi^{-}$) has three pions on the signal side
- → use subset of τ^{\pm} → $\nu \pi^{\pm}\pi^{+}\pi^{-}$ as control sample (1P×3P configuration)
 - ensure similar kinematics by choosing events where the mass of $\pi^+\pi^-$ is in sideband of K_s mass window \rightarrow fake K_s
 - sideband: $456 \text{MeV} < m_m < 482 \text{MeV}$ or $514 \text{MeV} < m_m 540 \text{MeV}$

Measure "fake" CPV in this control sample and use any non-zero values as systematic errors due to experimental effects!

Experimental asymmetries

Tag side:

- does not affect CPV measurement because <cos ψ cos β > independent of number of τ[±] events
- → differences in total number of events $(N^+ \neq N^-)$ can be ignored

γ -Z interference effects:

 τ + τ - production is asymmetric with respect to e+e-axis because γ -Z interference effects:

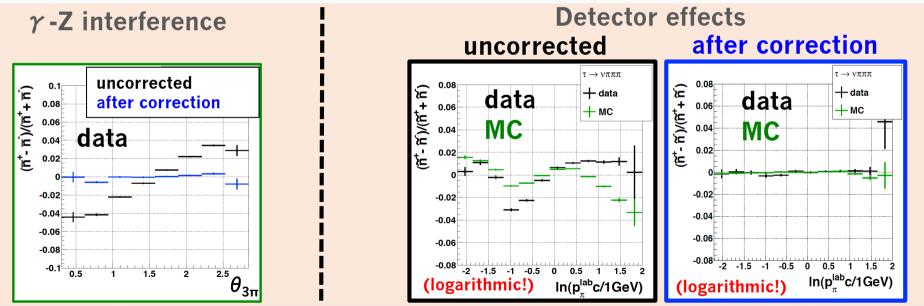
- asymmetry for $N_{\tau-}/N_{\tau+}$ as a function of the polar angle θ in cms
- this should not affect CPV measurement because we measure angles relative to tau direction, not the laboratory (will be shown later)

Asymmetries introduced by detector:

- bias for tracking efficiency, particle ID etc because of different nuclear cross sections for π^+ and π^-
 - effect cancels out for K_s ($K^0 \overline{K}^0$ effects are very small)
 - Asymmetry is a function of laboratory angle and momentum of pion

Measure both effects in data from $\tau \pm \nu \pi^{\pm} \pi^{-}$ (full sample, not control sample) and correct by weighting events

Any remaining effects can estimated from the control sample


Correction of Experimental Asymmetries

Use $\tau^{\pm} \rightarrow \nu \pi^{\pm} \pi^{+} \pi^{-}$ to measure

- **1.** γ -Z interference:
 - approximate tau direction by momentum of 3 pions
 - measure $n_{\tau-}$ and $n_{\tau+}$ as a function of $\theta_{3\pi}$ and $|P_{3\pi}|$

2. Detector effects:

• measure $n_{\pi^{\!-}}$ and $n_{\pi^{\!+}}$ as a function of pion polar angle and momentum

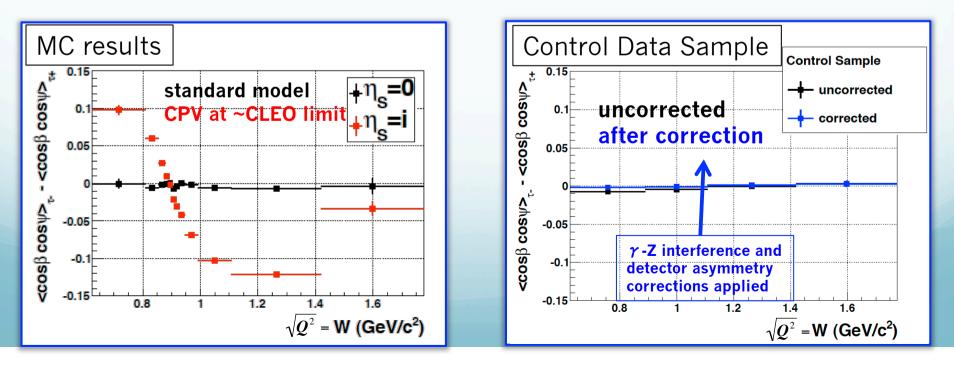
Correction by weighting works well! Remaining effects are checked with control sample $P_{3\pi}$

e⁻

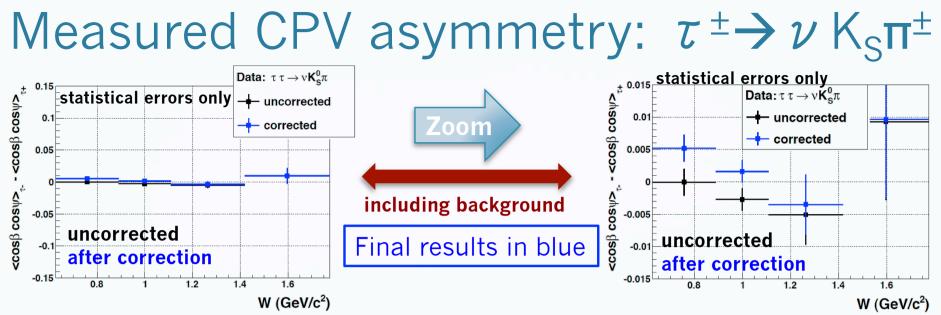
15/9/2010

 $\theta_{3\pi}$

e+


"Expected" CP violating asymmetry

Reminder: $A_{\psi\beta}^{\text{CP}} = (\langle \cos\psi\cos\beta\rangle_{-} - \langle \cos\psi\cos\beta\rangle_{+}) \propto \text{Im}(\eta_S)$


- expected CPV for Im(η_s) = 1 (Current Limits (CLEO): -4.1 < Im(η_s) < 1.6)
- Only very small asymmetry effect in control sample: **O(10-3)**
 - corrections for γ -Z interference and detector asymmetries (both up to ~4%) only have a small effect: **O(0.01%)** and **O(0.1%)**
 - remaining effect will be used as systematic error

Measure the CP asymmetry in 4 bins of Q^2

 bin boundaries at Q² values where the sign of Im(FF^{*}_H) can change in typical parameterizations of form factors

Measured CPV asymmetry: $\tau \pm \nu K_{S}\pi^{\pm}$

Results after background subtraction

data: 700 fb⁻¹

		(10^{-3}) (Belle preliminary)							
	W in (GeV/c^2)	$A^{ m CP}_{\psieta}$	$\sigma_{ m stat}$	$\sigma_{ m syst}^{ m tot}$	$\sigma_{ m syst}^{ m ctr}$	$\sigma^{ m mc}_{ m syst}$	$\sigma^{\mathcal{B}}_{\mathrm{syst}}$		
	0.625 - 0.890	7.94	3.29	2.84	2.76	0.17	0.64		
	0.890 - 1.110	1.81	2.16	1.40	1.40	0.09	0.04		
	1.110 - 1.420	-4.64	7.97	1.64	1.50	0.62	0.25		
	1.420 - 1.775	-2.31	21.96	5.46	5.18	0.97	1.41		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
atic uncertainty measured from sample						ing ratios			

main systematic uncertainty measured from asymmetry in control sample

Asymmetry within errors except for lowest mass bin

1.8 σ effect in first bin ($\sigma^2 = \sigma^2_{stat} + \sigma^2_{sys}$)

Tau2010

Extraction of Im($\eta_{\rm S}$)

- CPV asymmetry is linear in Im(η_s)
 - for $K_{S}^{0}\pi$ mass bin i: $A_{\psi\beta,i}^{CP} = c_i \cdot \operatorname{Im}(\eta_S)$

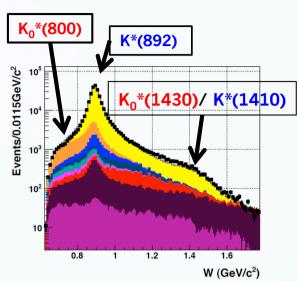
$$c_i = \frac{N_s}{n_i} \int_{Q_1^2}^{Q_2^2} C''(Q^2) \frac{\Im(FF_H^*)}{m_\tau} \, dQ^2$$

- c_i depends on interference of form factor **F** and **F_H** (vector, **Higgs**)
- F_H related to SM scalar form factor F_S

$$F_H(Q^2) = \frac{Q^2}{M_N} F_S(Q^2) \quad \text{with} \quad M_N = 1 \,\text{GeV}/c^2$$

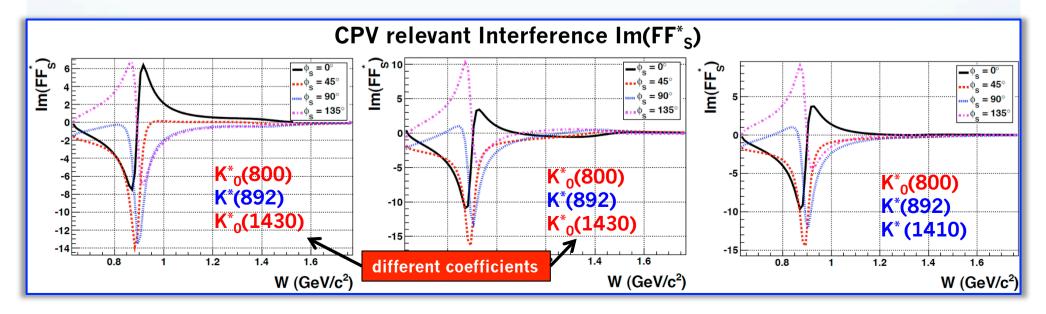
- M_N=1GeV arbitrarily chosen (same as used by CLEO)
 - \rightarrow sets the scale for $\eta_{\rm S}$
 - theoretically $M_N = m_u m_s$ [J. Kuhn, E.Mirkes PLB398,407,1997]

$$\rightarrow \eta'_{\rm S} = \eta_{\rm S} \times (m_{\rm u} - m_{\rm s}) / M_{\rm N}$$

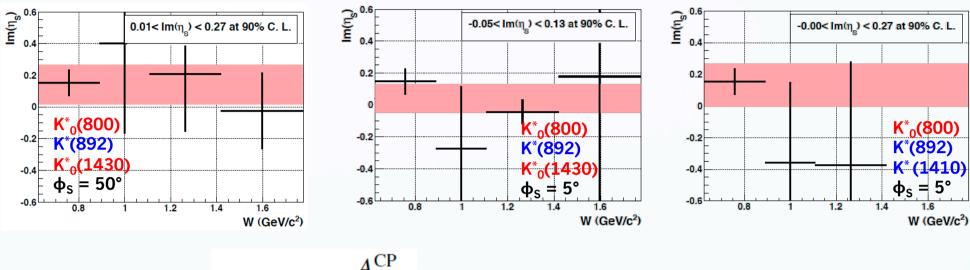

Form factor F and F_S can be determined from from measurement of $K^0{}_S\pi$ mass spectrum

Parameterization of F and F_S

 $K_{S}^{0}\pi$ mass spectrum is sensitive to $|F|^{2}$ and $|F_{S}|^{2}$


Assume sum of BW shapes of relevant K^{\ast} resonances

- vector: K*(892) and K*(1410)
- scalar: K^{*}₀(800) and K^{*}₀(1430)
- complex coefficients from fit to spectrum
- in principle, can determine F and F_S up to relative phase φ_S



However determination not unique with used statistics [Belle: PLB 654, 65 (2007)]

 \rightarrow testing 3 different parameterizations with $\phi_s = 0^\circ$, 5°,... 360° (+CLEO's)

Limits for CPV parameter Im($\eta_{\rm S}$)

Each bin: $\operatorname{Im}(\eta_S) = -$

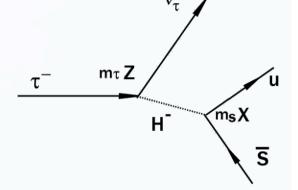
- Since ϕ_S is undetermined, choose most conservative value for each parameterization
- Limits $|Im(\eta_s)| < 0.13 0.27$ at 90% c. l. (Belle preliminary)
- ~15× better than previous limits (CLEO: |Im(η_s)| <4.1)

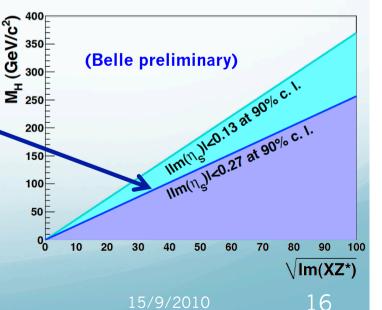
CLEO parameterization of F, F_s K*(892)+K*₀(1430)+K*₀(1680) $(\phi_s = 0^\circ)$

For comparison:

15

Limits for New Physics


 CP violation in τ [±]→ ν K⁰_Sπ[±] is possible in multi (≥3) Higgs doublet models:
 S.Y. Choi PRD52,1614 (1995)


$$\operatorname{Im}(\eta_S) = -\frac{m_{\tau}M_N}{M_H^2} \cdot \operatorname{Im}(XZ^*) \quad \text{with} \quad M_N = 1 \operatorname{GeV}/c^2$$

- M_H mass of lightest charged Higgs
- complex coupling constants: X, Z
- M_N is artifact from F_H-F_S relation on slide 13 (scale of η_S)

 $\operatorname{Im}(XZ^*) < 0.15 \times M_H^2$

Note: for 2HDM with natural flavor conservation: XZ* = tan² β
 → Im(XZ*)=0

Summary

- Search for CPV in τ [±]→ ν K⁰_Sπ[±] with 700fb⁻¹ of Belle data
- We measured CPV asymmetry with angular weight
- Asymmetry is O(10⁻³) and compatible with zero
- Parameterization of form factors from data
 - Limits for CPV parameter $|Im(\eta_s)| < 0.27$
 - Improvement of one order of magnitude with respect to previous limits

Thank you very much for listening!

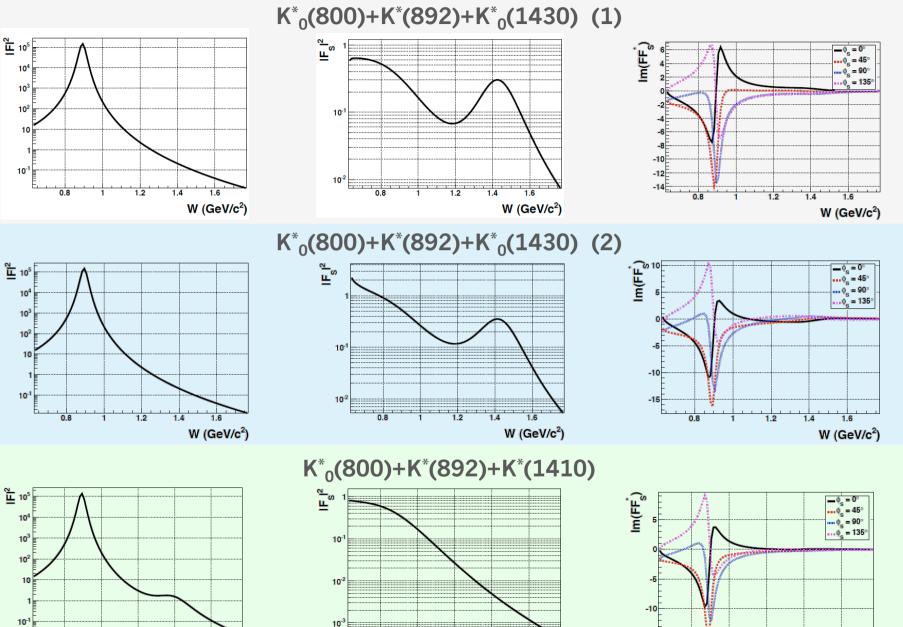
BACKUP

Form Factors

• F and F_S can be parameterized as a sum of BW of the relevant resonances in the mass range:

 $F(Q^2) = \frac{1}{1+\beta+\chi} \left[BW_{K^*(892)}(Q^2) + \beta BW_{K^*(1410)}(Q^2) + \chi BW_{K^*(1680)}(Q^2) \right]$

$$F_S(Q^2) = e^{i\phi_S} \left(\kappa \frac{m_K^2 - m_\pi^2}{m_{K_0^*(800)}^2} BW_{K_0^*(800)}(Q^2) + \gamma \frac{m_K^2 - m_\pi^2}{m_{K_0^*(1430)}^2} BW_{K_0^*(1430)}(Q^2) \right)$$


• complex coefficients (β , χ , κ , Υ) from previous Belle measurement (3 solutions from fit to mass spectrum):

- $K_0^*(800) + K^*(892) + K_0^*(1430)$ (2×)
- K^{*}₀(800)+K^{*}(892)+K^{*}(1410) (1×)
- Also testing with model used in CLEO's CPV analysis
 - $K^*(892) + K^*_0(1430) + K^*(1680)$

However: CLEO used different normalization for $K^*_0(1430)$ \rightarrow difference in CPV parameter Im(η_s) and CLEO's Λ

$$\Lambda = \frac{m_{K_0^*(1430)}^2}{m_K^2 - m_\pi^2} \cdot \Im(\eta_S)$$

1.2

1

1.4

1.6

W (GeV/c²)

0.8

-15

0.8

1

1.6

W (GeV/c²)

1.2

1.4

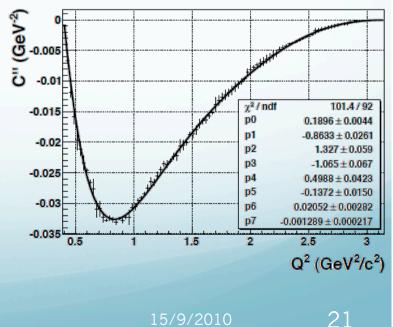
0.8

1

1.2

1.4

1.6


W (GeV/c²)

Extraction of Limits

In Q² bin i

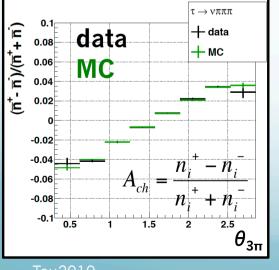
$$\begin{split} A_{\beta\psi,i}^{CP} &= \langle \cos\beta\cos\psi \rangle_{\tau^{-}}^{i} - \langle \cos\beta\cos\psi \rangle_{\tau^{+}}^{i} \\ &= \operatorname{Im}(\eta_{S}) \cdot \frac{N_{s}^{-}}{n_{i}^{-}} \frac{1}{\Gamma} \int_{Q_{1}^{2}}^{Q_{2}^{2}} \frac{\varepsilon(Q^{2},\beta,\psi)}{\varepsilon_{\mathrm{tot}}} \cos^{2}\beta\cos^{2}\psi C'(Q^{2}) \frac{\operatorname{Im}(FF_{H}^{*})}{m_{\tau}} dQ^{2} d\cos\theta d\cos\beta \\ &= \operatorname{Im}(\eta_{S}) \cdot \frac{N_{s}}{n_{i}} \int_{Q_{1}^{2}}^{Q_{2}^{2}} C''(Q^{2}) \frac{\operatorname{Im}(FF_{H}^{*})}{m_{\tau}} dQ^{2} \end{split}$$

- \mathbf{n}_i : Number of reconstructed $\tau \rightarrow \nu \text{ K}^0{}_{\text{S}}\pi$ events in bin i
- N_s: total number of reconstructed signal events
- C'' can be parameterized as 7th order polynomial function
- Test of any parameterization of F, F_S possible directly from measured values of CPV asymmetry $A_{\beta \psi}$

Background subtraction

- measure: $\langle \cos \psi \cos \beta \rangle_{o-}$ and N_o^{\pm}
- from MC: N_s^{\pm} for determination of purity
- background effect Δ_{b} is partly considered in systematic error

Tau2010

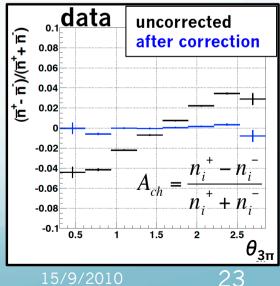

 Δ_{L}

γ-Z interference effects

Asymmetry is a function of τ polar angle: θ_{τ}


- Use $\tau \rightarrow \nu \pi^{\pm}\pi^{+}\pi^{-}$ decays to measure asymmetry
 - all events with 1P tag and three primary π^{\pm} on signal side (usual basic $\tau + \tau^{-}$ event selection)
 - tau direction approximated by $\vec{P}_{3\pi} = \vec{p_{\pi_1}} + \vec{p_{\pi_3}} + \vec{p_{\pi_3}}$
 - because of missing neutrino, use polar angle and momentum:
 - count events $\mathbf{n_i^{\pm}}$ in bins i of $\theta_{3\pi}$ and $|P_{3\pi}|$
 - ± refers to charge sum = charge of τ
 - Asymmetry:

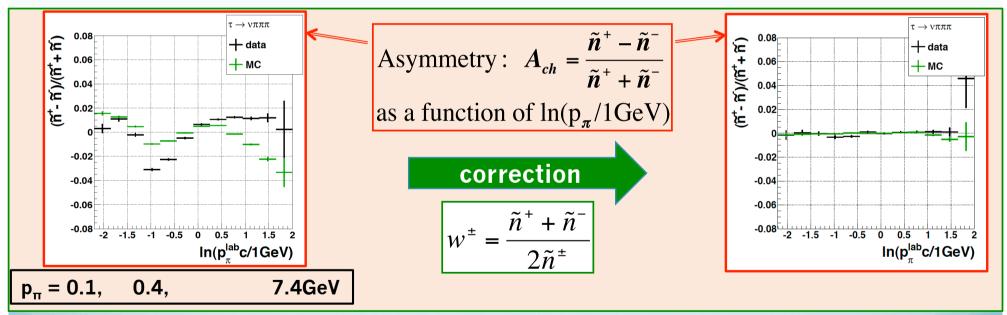
$$A_{ch} = \frac{n_i^+ - n_i^-}{n_i^+ + n_i^-}$$



- ~4% effect
- calculating weights from MC in 6×6 bins of θ_{3π} and |P_{3π}|
 weight each event with:

$$w_i^{\pm} = \frac{n_i^{+} + n_i^{-}}{2n_i^{\pm}}$$

this data sample is not the same as the control sample: no mass restriction for $\pi^+\pi^-$ pairs!



Tau2010

Detector Asymmetries

Using same $\tau \stackrel{t}{\rightarrow} \nu \pi^{\pm}\pi^{+}\pi^{-}$ sample after correcting the γ -Z interference effects

- Chose random π^{\pm} from the signal side with same charge as $\,\tau^{\,\pm}\,$
- Asymmetry is measured as a function of π^{\pm} momentum $|p_{\pi}|$ and polar angle θ_{π} in laboratory (24×6 bins)
- Count number of number of (weighted) events ñ_i in each bin
- Difference between π^+/π^- up to a few %

Correction by weighting works well!

Remaining effects are checked with control sample

Tau2010

24