

Tests of CP and CPT in the τ Sector at BABAR

Hervé Choi Presenting on Behalf of the BABAR Collaboration

University of Victoria Victoria, British Columbia, Canada

Tau2010 Workshop, Manchester

Introduction	BABAR	Selection	CPT	CP	Summary
— .					

Testing of Symmetries

- Discrete symmetries constitute an important part of the Standard Model (SM)
- ▶ Results for the tests of *CPT* and *CP* presented here:
 - CPT test: Is $M_{\tau^+} = M_{\tau^-}$? (PRD 80, 092005)
 - *CP* test: Is $\Gamma(\tau^+ \to \pi^+ K_s^0 \ \overline{\nu}_{\tau}) = \Gamma(\tau^- \to \pi^- K_s^0 \ \nu_{\tau})$? (New preliminary results)
- To test these symmetries, precision measurements are required
- BABAR has recorded over 900 million τ decays

Introduction	BABAR	Selection	СРТ	СР	Summary

Test on *CPT* in the τ Sector

• *CPT* theorem states that all observables are invariant under *CPT* transformation $\Rightarrow M_{\tau^-} = M_{\tau^+}$

 \therefore Precise measurement of the mass difference between τ^- and τ^+ can test *CPT* invariance (τ mass results also published in the *BABAR* analysis)

 Current limit (90% C.L.) from Belle (Phys. Rev. Lett. 99 [2007] 011801):

$$rac{M(au^+)-M(au^-)|}{M_{Average}} < 2.8 imes 10^{-4}$$

A D > A P > A B > A B >

 Current PDG τ mass: (1776.82 ± 0.16) MeV/c²

Introduction	BABAR	Selection	CPT	CP	Summary

CP Violation in au Decays

CP violation has not been observed in the lepton sector
 Bigi and Sanda predict that there is a decay rate asymmetry for τ⁻ → π⁻K⁰_s ν_τ [Phys.Lett. B625 (2005) 47-52]

$$A_{Q} = \frac{\Gamma\left(\tau^{+} \to \pi^{+} K_{s}^{0} \ \overline{\nu}_{\tau}\right) - \Gamma\left(\tau^{-} \to \pi^{-} K_{s}^{0} \ \nu_{\tau}\right)}{\Gamma\left(\tau^{+} \to \pi^{+} K_{s}^{0} \ \overline{\nu}_{\tau}\right) + \Gamma\left(\tau^{-} \to \pi^{-} K_{s}^{0} \ \nu_{\tau}\right)}$$

due to the K_s^0 in the decay

► The asymmetry is predicted to be (0.33 ± 0.01)% based on previous K⁰_S-K⁰_L experiments

Introduction	BABAR	Selection	CPT	СР	Summary

PEP-II and the BABAR Experiment

• Only $\Upsilon(4S)$ used (>400 fb⁻¹)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

▶ 900 million τ pairs

Introduction	BABAR	Selection	СРТ	CP	Summary

Signal side: 3-prong Tag side: 1-prong

CPT analysis selection:

- ► 423 fb⁻¹ of Υ(4S) resonance data used, amount to 388 million τ⁺ τ⁻ pairs
- ▶ Signal mode: $\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau$ due to large branching fraction
- No K⁰_S, π⁰, or leptons in the signal hemisphere

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- Two-photon processes are also vetoed by kinematic cuts
- ▶ Tagged with $\tau^- \to e^- \nu \overline{\nu}$ and $\tau^- \to \mu^- \nu \overline{\nu}$

Introduction	BABAR	Selection	СРТ	СР	Summary
C 1	C 11 1				
Selection	Criteria				

Signal side: 1-prong + K_s^0 Tag side: 1-prong

CP analysis selection:

- ► 476 fb⁻¹ of Υ(4S) resonance data used, amount to 437 million τ⁺ τ⁻ pairs
- Kinematic-based preselection criteria
- Likelihood-based selection to further refine sample
- Signal: $\tau^- \rightarrow h^- K_s^0 (\geq 0 \pi^0) \nu_{\tau}$

• Tagged with $\tau^- \rightarrow e^- \nu \overline{\nu}$

Introduction	BABAR	Selection	СРТ	СР	Summary

CPT Analysis Strategy

 "Pseudomass" variable is used to measure M_{\u03c0}:

$$M_{p}=\sqrt{M_{h}^{2}+2\left(\sqrt{s}/2-E_{h}^{*}
ight)\left(E_{h}^{*}-P_{h}^{*}
ight)}$$

where M_h , E_h^* and P_h^* are invariant mass, energy and (3-)momentum of the hadronic system, respectively, in CM frame

• At M_{τ} , M_p drops off steeply

Introduction	BABAR	Selection	СРТ	СР	Summary

CPT Analysis: Pseudomass

A D > A P > A B > A B >

3

Introduction	BABAR	Selection	CPT	CP	Summary

CPT: Fit on the Pseudomass Distribution

Fitting $F(M_p)$ to the data, where:

$${\sf F}(M_p) = (p_3 + p_4 M_p) {\sf tan}^{-1} \left(rac{p_1 - M_p}{p_2}
ight) + p_5 + p_6 M_p$$

 p_i are the fit parameters

< 17 >

∃ ⊳

Introduction	BABAR	Selection	CPT	СР	Summary

CPT: Analysis Results

Final results: (PRD 80, 092005)

•
$$M_{\tau} = 1776.68 \pm 0.12(stat) \pm 0.41(syst) \,\mathrm{MeV}/c^2$$

$$\frac{M(\tau^+) - M(\tau^-)}{M_{Average}} = (-3.4 \pm 1.3[stat] \pm 0.3[syst]) \times 10^{-4}$$

 \Rightarrow 90% C.L. UL = 5.5 \times 10⁻⁴

TABLE VII: Systematic uncertainties in M_{τ} .

Source	Uncertainty (MeV)
Momentum Reconstruction	0.39
CM Energy	0.09
MC Modeling	0.05
MC Statistics	0.05
Fit Range	0.05
Parameterization	0.03
Total	0.41

Sac

Introduction	BABAR	Selection	CPT	CP	Summary

CP Analysis Strategy

Signal modes used in the analysis:

8	5
Mode	Branching Fraction (PDG '10)
$ au^- ightarrow \pi^- K^0_{ m s} \left(\geq 0 \pi^0 ight) u_ au$	$11.6 imes10^{-3}$
$ au^- ightarrow {\it K}^- {\it K}^0_s (\geq 0 \pi^0) u_ au$	$3.1 imes10^{-3}$
$ au^- ightarrow \pi^- K^0 \overline{K^0} \left(\ge 0 \pi^0 ight) u_ au$	$2.0 imes10^{-3}$

► The use of this "inclusive" technique has the advantages of:

- eliminating PID errors due to identifying the charged hadron in the decay
- optimising statistics
- ► Downside: Reduction of the charge asymmetry to (0.17±0.01)%
- For this study, only look at e-tagged events

Introduction	BABAR	Selection	CPT	СР	Summary

CP: Hadronic Mass Plots

Invariant mass of the $\pi^ K^0_s$ (top) and $K^ K^0_s$ (bottom) systems

∃ 990

Introduction	BABAR	Selection	СРТ	СР	Summary

CP: MC Study

Source	Fractions (%)	Asymmetry(%)
Monte Carlo	100	0.04 ± 0.15
Total Signal	98.5±0.2	
$\pi^- \ {\cal K}^0_s \ (\geq 0 \pi^0) u_ au$	66.5 ± 0.2	0.13 ± 0.19
$K^{-} K^{0}_{s} (\geq 0\pi^{0}) \nu_{\tau}$	$19.14{\pm}0.07$	-0.19 ± 0.32
$\pi^ K^0$ \overline{K}^0 $ u_ au$	$12.82{\pm}0.05$	-0.16 ± 0.39
Total Background	$1.51{\pm}0.02$	
au background	$0.243 {\pm} 0.007$	
uds	$0.197{\pm}0.007$	
с с	$1.07{\pm}0.02$	

- MC is used to study selection biases
- No asymmetry observed in the Monte Carlo
- ► 230k data events and 235k MC events pass through all selection criteria

Introduction	BABAR	Selection	СРТ	СР	Summary
CP: Result	IS				

- The final measured asymmetry is (-0.10±0.21±0.22)% (BABAR preliminary)
- Systematic uncertainties:

Selection Uncertainty	0.15%
Detector Uncertainty	0.12%
K^0 - \overline{K}^0 Nuclear Interaction	0.10%
Total Systematic Uncertainties	0.22%

Sac

Introduction	BABAR	Selection	CPT	СР	Summary

CP: Detector Uncertainty

- ► Control sample $(\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau)$ without K_s^0 is used to test any biases in the detector that are not modelled in the MC
- ► No decay rate asymmetry is expected in the control sample
- Detector uncertainty is the difference in asymmetries between data and MC control samples

- 4 周 ト 4 ラ ト 4 ラ ト

Introduction	BABAR	Selection	CPT	CP	Summary

CP: $K^0 - \overline{K}^0$ Nuclear Interaction

Asymmetry due to K^{0} - \overline{K}^{0} nuclear interaction vs. momentum of K_{s}^{0}

- ► A paper by Ko et al. (arXiv:1006.1938v1 [hep-ex]) points out that the difference in nuclear interaction cross sections between K⁰ and K⁰ can change the measured decay rate asymmetry for all decays with K⁰_S
- ► Full impact is still under study for τ decays, but Ko et al. state that this effect is <0.1%</p>
- A 0.10% uncertainty is added to the total systematic uncertainties (a conservative estimate)

A D > A P > A B > A B >

 \rightarrow Measured for the first time

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □