KLOE measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ with Initial State Radiation and the $\pi\pi$ contribution to the muon anomaly

> Graziano Venanzoni (for the KLOE collaboration) Laboratori Nazionali di Frascati

TAU2010, Manchester, 15 September 2010

Outlook

- KLOE measurements of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$:
 - Small (photon) angle measurements (KLOE05, KLOE08)
 - Large (photon) angle measurement (KLOE10)
- Evaluation of $a_{\mu}^{\pi\pi}$ and comparison with CMD-2/SND/BaBar
- New measurement well advanced:
 - Extraction of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ by $\mu\mu\gamma$ normalization
- Future prospects with KLOE-2
- Conclusions

ISR: Initial State Radiation

Particle factories (DA Φ NE, PEP-II, KEK-B) can measure hadronic cross sections as a function of the hadronic c.m. energy using initial state radiation (radiative return to energies below the collider energy \sqrt{s}).

The emission of a hard γ in the bremsstrahlung process in the initial state reduces the energy available to produce the hadronic system in the e⁺e⁻ collision.

ISR: Initial State Radiation

Neglecting final state radiation (FSR):

Theoretical input: precise calculation of the radiation function H(s, M²_{hadr})

EVA + PHOKHARA MC Generator

Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function)

IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 $\Rightarrow \sim 3\sigma$ discrepancy btw a_{μ}^{SM} and a_{μ}^{exp}

DAΦNE: A Φ-Factory

e^+e^- - collider with $\sqrt{s}=m_{\Phi}\approx 1.0195$ GeV

KLOE05 measurement (PLB606(2005)12) was based on 140pb⁻¹ of 2001 data!

KLOE08 measurement (PLB670(2009)285) was based on 240pb⁻¹ from 2002 data!

Integrated Luminosity

Peak Luminosity L_{peak} = 1.5 • 10³² cm⁻²s⁻¹

2006:

- Energy scan_(4 points around m_{Φ} -peak)
- 240 pb⁻¹ at \sqrt{s} = 1000 MeV (off-peak data)

The new measurement (KLOE10) is based on 233 pb⁻¹ of 2006 data (different event selection). sub. to PLB

KLOE Detector

Drift chamber

 $\sigma_p/p = 0.4\%$ (for 90^o tracks) $\sigma_{xy} \approx 150 \ \mu m, \ \sigma_z \approx 2 \ mm$ *Excellent momentum resolution*

Full stereo geometry, 4m diameter, 52.140 wires 90% Helium, 10% iC₄H₁₀

KLOE Detector

Electromagnetic Calorimeter

бm

 $\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$ $\sigma_{\rm T}$ = 54 ps / $\sqrt{E(GeV)}$ \oplus 100 ps (Bunch length contribution subtracted from constant term) Excellent timing resolution

Extracting $\sigma_{\pi\pi}$ and $|F_{\pi}|^2$ from $\pi\pi\gamma$ events

1)
$$\frac{d\sigma_{\pi\pi\gamma(\gamma)}^{obs}}{dM_{\pi\pi}^{2}} = \frac{\Delta N_{Obs} - \Delta N_{Bkg}}{\Delta M_{\pi\pi}^{2}} \cdot \frac{1}{\varepsilon_{Sel}} \cdot \frac{1}{\int Ldt}$$

 $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ is obtained by subtracting background from observed event spectrum, divide by selection efficiencies, and *int. luminosity*:

2)
$$\sigma_{\pi\pi}(s) \approx s \frac{d\sigma_{\pi\pi\gamma(\gamma)}^{obs}}{dM_{\pi\pi}^2} \cdot \frac{1}{H(s)}$$

Obtain $\sigma_{\pi\pi}$ from (ISR) - radiative cross section $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ via theoretical radiator function H(s):

3)
$$\left| \left| \mathbf{F}_{\pi} \right|^2 = \frac{3s}{\pi \alpha^2 \beta_{\pi}^3} \sigma_{\pi\pi}(s) \right|$$

Relation between $|F_{\pi}|^2$ and the cross section $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

b) Via bin-by-bin Normalisation to rad. Muon events (analysis is in a well advanced phase, see later)

Radiative Corrections

Radiator-Function $H(s,s_{\pi})$ (ISR):

- ISR-Process calculated at NLO-level PHOKHARA generator (H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC27,2003)

Precision: 0.5%

$$s \cdot \frac{\mathrm{d}\sigma_{\pi\pi\gamma}}{\mathrm{d}s_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times \mathsf{H}(\mathsf{s},\mathsf{s}_{\pi})$$

Radiative Corrections:

i) Bare Cross Section

divide by Vacuum Polarisation $\delta(s) = (\alpha(s)/\alpha(0))^2$

→ from F. Jegerlehner

ii) FSR

Cross section $\sigma_{\pi\pi}$ must be incl. for FSR for use in the dispersion integral of a_u

FSR corrections have to be taken into account in the efficiency eval. (Acceptance, M_{Trk}) and in the mapping $\mathbf{s}_{\pi} \rightarrow \mathbf{s}_{\gamma*}$

(H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC33,2004)

SA Event Selection (KLOE08)

- a) 2 tracks with 50° < θ_{track} < 130°
- b) small angle (not detected) γ ($\theta_{\pi\pi} < 15^{\circ} \text{ or } > 165^{\circ}$)
 - \checkmark high statistics for ISR
 - \checkmark low relative FSR contribution
- x 10² \checkmark suppressed $\phi \rightarrow \pi^+\pi^-\pi^0$ wrt the signal

statistics: 240pb⁻¹ of 2002 data 3.1 Mill. Events between 0.35 and 0.95 GeV²

kinematics:
$$\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_{+} + \vec{p}_{-})$$

Event Selection

• Experimental challenge: control backgrounds from

$$-\phi \rightarrow \pi^+ \pi^- \pi^0$$

$$-e^+e^- \rightarrow e^+e^- \gamma$$

$$-e^+e^-
ightarrow \mu^+\mu^- \gamma$$
,

removed using kinematical cuts in *trackmass* M_{Trk} - $M_{\pi\pi}^2$ plane

 M_{Trk} : defined by 4-momentum conservation assuming 2 charged particle (of same mass) and one γ in the final state

$$\left(\sqrt{s} - \sqrt{p_1^2 + M_{trk}^2} - \sqrt{p_2^2 + M_{trk}^2}\right)^2 - (p_1 + p_2)^2 = 0$$

To further clean the samples from radiative Bhabha events, we use a particle ID estimator (PID) for each charged track based on Calorimeter Information and Time-of-Flight.

180 $(\overset{\textup{Me}}{\text{M}}_{160})$ $\pi\pi\gamma(\gamma)$ 120 $\mu \mu \gamma(\gamma)$ 100 $0.3 \ 0.4 \ 0.5 \ 0.6 \ 0.7 \ 0.8 \ 0.9 \ 1.0$ $M_{\pi\pi}^2$ (GeV²)

 $\mathbf{200}$

 Σ^{trk}

 $\pi\pi\pi$

Background:

Main backgrounds estimated from MC shapes fitted to data distribution in M_{Trk} ($\pi\pi\gamma/\mu\mu\gamma$, $\pi\pi\pi$, ee γ)

S CON KLOK

Luminosity:

KLOE measures L with Bhabha scattering

 $55^{\circ} < \theta < 125^{\circ}$ acollinearity $< 9^{\circ}$ $p \ge 400 \text{ MeV}$

$$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$

F. Ambrosino et al. (KLOE Coll.) Eur.Phys.J.C47:589-596,2006

generator used for σ_{eff} BABAYAGA (Pavia group):

C. M.C. Calame et al., NPB758 (2006) 22

new version (BABAYAGA@NLO) gives 0.7% decrease in cross section, and better accuracy: 0.1%

Systematics on Luminosity		
Theory	0.1 %	
Experiment	0.3 %	
TOTAL 0.1 % th \oplus 0.3% exp = 0.3%		

Luminosity:

Systematic errors on $a_{\mu}^{\pi\pi}$:

Reconstruction Filter	negligible
Background	0.3%
Trackmass/Miss. Mass	0.2%
π/e -ID and TCA	negligible
Tracking	0.3%
Trigger	0.1%
Acceptance $(\theta_{\pi\pi})$	0.1%
Acceptance (θ_{π})	negligible
Unfolding	negligible
Software Trigger	0.1%
\sqrt{s} dep. Of H	0.2%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_{\mu} = 0.6 \%$

	•
FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	0.1%

theoretical fractional error on $a_{\mu} = 0.6$ %

 $a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds$

as function of $(M^0_{\pi\pi})^2$ 1400 $\overline{}$

 $\sigma_{\!\pi\pi}\!$, undressed from VP, inclusive for FSR

a_μ^{ππ}(0.35-0.95GeV²) = (387.2 ± 0.5_{stat}±2.4_{sys} ±2.3_{theo}) · 10⁻¹⁰

LA Event Selection (KLOE10)

2 pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at large angles

 $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

- ✓ independent complementary analysis
- \checkmark threshold region $(2m_{\pi})^2$ accessible

 $\checkmark \gamma_{\text{ISR}}$ photon detected

(4-momentum constraints)

- ✓ lower signal statistics
- ✓ larger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- ✓ irreducible background from ϕ decays (ϕ → f_0 γ → $\pi\pi$ γ)

Threshold region non-trivial

due to irreducible FSR-effects, which have to be estimated from MC using phenomenological models (interference effects unknown)

At least 1 photon with $50^{\circ} < \theta_{\gamma} < 130^{\circ}$ and $E_{\gamma} > 20$ MeV \rightarrow photon detected

LA Event Selection (KLOE10)

2 pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

Photons at large angles $50^\circ < \theta_v < 130^\circ$

- ✓ independent complementary analysis
 ✓ threshold region (2m_x)² accessible
- $\checkmark \gamma_{\rm ISR}$ photon detected

(4-momentum constraints)

- ✓ lower signal statistics
 ✓ larger contribution from FSR events
- Iarger contribution from FSR events
- ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination
- ✓ irreducible background from ϕ decays (ϕ → f₀ γ → $\pi\pi$ γ)

Use data sample taken at √**s≅1000 MeV**, 20 MeV below the φ–peak

Event selection

 Experimental challenge: Fight background from

$$- e^+e^- \rightarrow \mu^+\mu^- \gamma,$$

$$- e^+e^- \rightarrow e^+e^- \gamma$$

$$- \phi \rightarrow \pi^+\pi^-\pi^0$$

separated by means of kinematical cuts in *trackmass* M_{Trk} and the angle Ω between the photon and the missing momentum

 $\vec{p}_{\rm miss} = -(\vec{p}_+ + \vec{p}_-)$

To further clean the samples from radiative Bhabha events, a particle ID estimator for each charged track based on Calorimeter Information and Time-of-Flight is used.

18

KLOE10 result: Pion Form Factor

arXiv:1006.5313

Table of systematic errors on a_μππ(0.1-0.85 GeV²):

Reconstruction Filter	< 0.1%
Background	0.5%
$f_0 + \rho \pi$	0.4%
Omega	0.2%
Trackmass	0.5%
π /e-ID and TCA	< 0.1%
Tracking	0.3%
Trigger	0.2%
Acceptance	0.4%
Unfolding	negligible
Software Trigger	0.1%
Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$	0.3%

experimental fractional error on $a_u = 1.0 \%$

FSR resummation	0.3%
Radiator H	0.5%
Vacuum polarization	< 0.1%

theoretical fractional error on $a_u = 0.6 \%$

 $a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds$

0.6% 1.0% 0.4%

KLOE covers ~70% of total a_{μ}^{HLO} with a fractional error of 1.0%

Comparison of results: KLOE10 vs CMD-2/SND

Comparison of results: KLOE10 vs CMD-2/SND

CMD and SND results compared to KLOE10: Fractional difference

Comparison of results: KLOE10 vs BaBar

BaBar results compared to KLOE10: Fractional difference

KLOE Measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-(\gamma))$ by ππγ/μμγ ratio

Analysis in a well advanced phase

$\sigma_{\pi\pi}$ measurement from π/μ

An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion over muon yields (instead of using absolute normalization with Bhabhas).

□ 240 pb⁻¹ of 2002 data sample (the same used in KLOE08 analysis): 0.87 Million $\mu\mu\gamma$ events expected (compared to 3.1 Million for $\pi\pi\gamma$)

 \Box A lot of work has been done to achieve a control of ~1% in the muon selection, especially in the ρ region where $\pi/\mu \sim 10$ (see later)

□We have achieved an excellent Data/MC agreement for muons in many kinematic variables (as we did for pions)

□Most of efficiencies for muons have been done and are ~100%

□We have not yet performed the absolute ratio $μμγ_{DATA}/μμγ_{MC}$ (test of QED) to check Radiator, Luminosity, FSR, etc...

Results are expected soon...

Example of data/MC comparison for $\mu\mu\gamma$ and $\pi\pi\gamma$: momentum components of μ and π

R

Test of Final State Radiation model by measurement of the Forward-Backward asymmetry in $e^+e^- \rightarrow \pi^+\pi^-\gamma$ process

Forward-backward asymmetry:

The FB asymmetry is an ideal tool to study the validity of FSR model in MC: Binner, Kühn, Melnikov, Phys. Lett. B 459, 1999

$$A = \frac{N(\theta^{+} > 90^{o}) - N(\theta^{+} < 90^{o})}{N(\theta^{+} > 90^{o}) + N(\theta^{+} < 90^{o})}$$

In a similar way like FSR, radiative decays of the φ into scalar mesons decaying to $\pi^+\pi^-$ also contribute to the asymmetry.

Czyz, Grzelinska, Kühn, hep-ph/0412239

Good agreement between data and MC

PHOKHARA-MC modified by O. Shekhovtsova using Kaon-Loop-Model used in KLOE analysis of $\pi^0\pi^0\gamma$ final state (Phokhara 6.1)

Prospects on σ_{HAD} with KLOE-2

Dispersion Integral:

Contribution of different energy regions to the dispersion integral and the error to a_{μ}^{had}

F. Jegerlehner, Talk at PHIPSI08

Experimental errors on σ^{had} translate into theoretical uncertainty of a_{μ}^{had} ! → Needs precision measurements!

> $\delta a_{\mu}^{exp} \rightarrow 1.5 \ 10^{-10} = 0.2\%$ on a_{μ}^{HLO} New g-2 exp.

e⁺e⁻ data: current and future/activities

DAFNE-2: DAFNE upgraded in energy with a luminosity $\sim 10^{32}$ cm⁻²s⁻¹ (~ 5 pb⁻¹ per day $\Leftrightarrow \sim 1$ fb⁻¹/year). Plan to measure σ_{HAD} at $\sim 2\%$ in the region up to 2-2.5 GeV (D. Babusci et al. arXiv:1007.5219)

Impact of DAFNE-2 on exclusive channels in the range [1-2] GeV with a scan (Statistical only)

Conclusions

Given KLOE has measured $\sigma_{\pi\pi}$ in the region 0.35 - 0.95 GeV² with ISR with ~1% systematic error (KLOE05, *PLB 606, 12 (2005)*, superseeded by KLOE08, *PLB 670*, *285 (2009)*)

•KLOE08 confirms the **discrepancy** of ~ 3σ between a_u^{SM} and a_u^{EXP}

•KLOE08 $a_{\mu}^{\pi\pi}$ agrees with recent results from CMD2 and SND experiments. Reasonable agreement on $\sigma_{\pi\pi}$ shapes

□KLOE has performed a new measurement of $\sigma_{\pi\pi}$ (KLOE10, submitted to PLB) in the range 0.1- 0.85 GeV² using data taken at 1.0 GeV (20 MeV below the ϕ -peak), with a different selection of KLOE08 → 1.0% systematic error

•Very good agreement with KLOE08 in the overlapping region (0.35-0.85 GeV²). Combination of the two measurements done

 $a_{\mu}^{\pi\pi}(0.1-0.95 \text{ GeV}^2) = (488.6\pm5.0) \cdot 10^{-10}$

•Agreement within errors with BaBar below 0.6 GeV; BaBar lies higher (2-3%) above

KLOE covers ~70% of total a_{μ}^{HLO} with an error of 1.0%

Outlook

 \Box Measurement of $\sigma_{\!\pi\pi}$ from $\pi\pi\gamma/\mu\mu\gamma$ ratio well advanced. Results are expected soon

□Test of FSR model by forward-backward asymmetry

□Still about 1.5 fb⁻¹ of KLOE from 2004/2005 data to be analyzed (3 times the statistics used up to now)

 \Box Very important for a_{μ} also the region between 1 and 2 GeV. Proposal to measure σ_{HAD} in this region with 1-2% with KLOE-2 at DAFNE upgraded in energy

"Proposal for taking data with the KLOE-2 detector at the DAFNE collider upgraded in energy". D. Babusci et al. LNF-10-17(P), e-Print: arXiv:1007.521

SPARE SLIDES

Theoretical predictions compared to the BNL result (2009)

 The latest inclusion of all e⁺e⁻ data (DHMYZ09) gives a discrepancy btw aSM_μ and a^{EXP}_μ of 3.2σ

•Remaining differences on $\sigma_{\pi\pi}$ btw different experiments (mainly KLOE/BaBar) to be clarified [Δa_{μ}^{EXP-SM} =2.4÷3.7 σ] Davier

(Reduced) discrepancy with τ data (new I. corr.,ee,τ data)
 [a_μ^{ee} - Δa_μ^τ =1.4σ]

KLOE10 is not yet in.

Comparison with CMD2/SND

