PHOKHARA 7.0 Monte Carlo generator: the narrow resonances implementation and new pion and kaon form factors.

H. CZYŻ, IF, UŚ, Katowice

TAU 2010, Manchester

Based on:

H. Czyż, J. H. Kühn and A. Wapienik,
"Four-pion production in tau decays and e+e- annihilation: an update,"
Phys. Rev. D 77 (2008) 114005
H. Czyż, J. H. Kühn

"Strong and Electromagnetic J/psi and psi(2S) Decays into Pion and Kaon Pairs," Phys. Rev. D 80 (2009) 034035

H. Czyż, A. Grzelińska and J. H. Kühn 'Narrow resonances studies with the radiative return method," Phys. Rev. D 81 (2010) 094014

H. Czyż, IF, UŚ, Katowice,,

THE RADIATIVE RETURN METHOD

High precision measurement of the hadronic cross-section at meson-factories

3

MC generators needed

Contributing amplitudes

PHOKHARA 7.0 ...

5

%

H. Czyż, IF, UŚ, Katowice,,

The cross section

$d\sigma =$ $|M_{\gamma_1,LOISR} \cdot C^{VP}_{R,P}(Q^2) + M_{\gamma_1,LOFSR} \cdot C^{VP}_{R,P}(s)|^2 d\Phi_1$ $+|M_{2\gamma,ISR}\cdot C^{VP}_{R,P}(Q^2)|^2d\Phi_2$ $+2 \operatorname{Re}(M_{\gamma_1,NLOISR} imes M_{\gamma_1,LOISR}^{\dagger}) \cdot |C_{R,P}^{VP}(Q^2)|^2 d\Phi_1$ $+|M_{\gamma_{1},ISR};\gamma_{,FSR}\cdot C_{R,P}^{VP}((Q+k_{\gamma})^{2})|^{2}d\Phi_{2}$ +2 Re $(M_{\gamma_1,LOISR}^{NLOFSR} \times M_{\gamma_1,LOISR}^{\dagger}) \cdot |C_{R,P}^{VP}(Q^2)|^2 d\Phi_1$ $+|M_{\gamma,ISR};\gamma_{1},FSR\cdot C_{R,P}^{VP}((Q+k_{\gamma_{1}})^{2})|^{2}d\Phi_{2}$ $+2 \operatorname{Re}(M_{\gamma_1,LOFSR}^{NLOISR} \times M_{\gamma_1,LOFSR}^{\dagger}) \cdot |C_{R,P}^{VP}(s)|^2 d\Phi_1,$

The cross section ...

$$egin{aligned} C_{R,P}^{VP}(s) &= rac{1}{1-\Deltalpha(s)} - rac{3\Gamma_e^\phi}{lpha m_\phi} \, BW_\phi(s) \delta_P \ &+ C_{J/\psi,P}(s) + C_{\psi(2S),P}(s) \;, \end{aligned}$$

$$C_{R,P}(s) = rac{3\sqrt{s}}{lpha} rac{\Gamma_e^R(1+c_P^R)}{s-M_R^2+i\Gamma_R M_R} \,.$$

$\chi^2/d.o.f. = 271/270$

C. Bruch, A. Khodjamirian and J.H. Kühn, Eur. Phys. J. C39(2005)41

H. C., A. Grzelińska and J.H. Kühn, Phys.Rev.D81:094014,2010 H. Czyż, IF, UŚ, Katowice,, PHOKHARA 7.0 ... 8

$$egin{aligned} F_{\pi}(s) &= \left[\sum_{n=0}^{N} c_{
ho_n}^{\pi} B W_{
ho_n}(s)
ight]_{fit} \ &+ \left[\sum_{n=(N+1)}^{\infty} c_{
ho_n}^{\pi} B W_{
ho_n}(s)
ight]_{dQCD} \ B W_{
ho_n}(s) &= rac{m_{
ho_n}^2 + H(0)}{m^2 - s + H(s) - i\sqrt{s}} \sum_{n=0}^{\infty} (s) \end{aligned}$$

 $\overline{m_{
ho_n}^2-s+H(s)-i\sqrt{s}\;\Gamma_{
ho_n}(s)}$

H. Czyż, IF, UŚ, Katowice,,

$$\begin{split} & \omega \text{ contribution} \\ c_{\rho_0}^{\pi} BW_{\rho_0}(s) \to \frac{c_{\rho_0}^{\pi} BW_{\rho_0}(s)}{1+c_{\omega}^{\pi}}(1+c_{\omega}^{\pi} BW_{\omega}) \\ & \text{expansion parameters} \\ c_{\rho_n}^{\pi} = \frac{(-1)^n \Gamma(\beta-1/2)}{\alpha' m_{\rho_n}^2 \sqrt{\pi} \Gamma(n+1) \Gamma(\beta-1-n)} \,, \end{split}$$

$$lpha' = 1/(2m_{
ho_0}^2), \;\; m_{
ho_n}^2 = m_{
ho_0}^2 \left(1+2n
ight)$$

$$f_n = F_n \left(\sum_{i=1}^5 c_{
ho_i}^\pi
ight) \, / \left(\sum_{i=1}^5 F_i
ight) \, n = 1, 2, 3, 4, 5$$

H. Czyż, IF, UŚ, Katowice,,

PHOKHARA 7.0 ... 10

The kaon form factors $_{e^+e^- \rightarrow K^+K^-}$

C. Bruch, A. Khodjamirian and J.H. Kühn, Eur. Phys. J. C39(2005)41

H. C., A. Grzelińska and J.H. Kühn, Phys.Rev.D81:094014,2010 H. Czyż, IF, UŚ, Katowice,, PHOKHARA 7.0 ... 12

The kaon form factors

C. Bruch, A. Khodjamirian and J.H. Kühn, Eur. Phys. J. C39(2005)41

H. C., A. Grzelińska and J.H. Kühn, Phys.Rev.D81:094014,2010

The kaon form factors

$$\begin{split} F_{K^{+}}(s) &= \frac{1}{2} \bigg(\left[\sum_{n=0}^{N_{\rho}} c_{\rho_{n}}^{K} BW_{\rho_{n}}(s) \right]_{fit} + \left[\sum_{n=N_{\rho}+1}^{\infty} c_{\rho_{n}}^{K} BW_{\rho_{n}}(s) \right]_{dQCD} + \frac{1}{6} \bigg(\left[\sum_{n=0}^{N_{\omega}} c_{\omega_{n}}^{K} BW_{\omega_{n}}^{c}(s) \right]_{fit} + \left[\sum_{n=N_{\omega}+1}^{\infty} c_{\omega_{n}}^{K} BW_{\omega_{n}}^{c}(s) \right]_{dQCD} + \frac{1}{3} \bigg(\left[\sum_{n=0}^{N_{\phi}} c_{\phi_{n}}^{K} BW_{\phi_{n}}^{K}(s) \right]_{fit} + \left[\sum_{n=N_{\phi}+1}^{\infty} c_{\phi_{n}}^{K} BW_{\phi_{n}}^{K}(s) \right]_{dQCD} \bigg) \bigg|_{dQCD} \end{split}$$

au o KK
u

H. Czyż, IF, UŚ, Katowice,,

PHOKHARA 7.0 ...

15

PHOKHARA 7.0

PHOKHARA 7.0 - FSR

Energy resolution

PHOKHARA 7.0 - FSR

PHOKHARA 7.0 ...

PHOKHARA 7.0 - FSR

20

Summary and outlook

PHOKHARA 7.0 - fully tested
new 4 π hadronic current
new pion and kaon form factors
J/ψ and ψ(2S) contributions included NLO FSR corrections important at a few percent level

Left over 1-loop corrections to $e^+e^- o \mu^+\mu^-\gamma$ to be included soon

