g-2 of the muon and $\Delta \alpha$ re-evaluated

Thomas Teubner

Kaoru Hagiwara, Ruofan Liao, Alan Martin and Daisuke Nomura

I. Introduction: SM contributions to g-2

II. Recent developments in $(g-2)_{\mu}$: Hadronic Vacuum Polarisation contributions

- 2π : KLOE 2009 and 2010, BaBar 2009 analyses
- Inclusive vs. sum of exclusive data below 2 GeV
- New HLMNT10 compilation; comparison SM vs. BNL

III. $\Delta \alpha(q^2)$: Running QED coupling in the space- and time-like region. $\alpha(M_Z^2)$ IV. Conclusions and Outlook

I. Introduction: SM contributions to g-2

•
$$a_{\mu} = (g-2)_{\mu}/2 = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{had}} + a_{\mu}^{\text{New Physics?}}$$

- QED: Predictions consolidated, further work (numerical five-loop) ongoing, big surprises very unprobable, error formidably small: a^{QED}_μ = 116584718.08(15) · 10⁻¹¹ √ Kinoshita et al.
- EW: reliable two-loop predictions, accuracy fully sufficient: $a_{\mu}^{\text{EW}} = (154 \pm 2) \cdot 10^{-11} \checkmark$ Czarnecki et al., Knecht et al.
- Hadronic contributions: uncertainties completely dominate Δa_{μ}^{SM} !

► Hadronic contributions from low γ virtualities not calculable with perturbative QCD - Lattice simulations difficult; promising first steps, but accuracy not (yet?) sufficient

▶ Vacuum Polarisation contributions from exp. $\sigma(e^+e^- o \gamma^* o hadrons)$ data

[or from $\tau \rightarrow \nu_{\tau} + hadrons$ spectral functions, but problem of isospin corrections] via *dispersion integral* (based on analyticity and unitarity):

$$a_{\mu}^{\text{had,VP LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$$

- \rightarrow Weighting with kernel K towards smallest energies
- \rightarrow Similar approach with different kernel functions for NLO VP contributions $a_{\mu}^{\rm had,VP~NLO}$

Light-by-Light:

 No dispersion relation for L-by-L. *First Principles* calculations from lattice QCD are underway by two groups: QCDSF and T Blum et al. Both approaches promising but at an early stage and no results yet.

[First results based on Dyson-Schwinger eqs. reported by C Fischer et al. at QCHS9.]

- → Convergence of different recent model calculations. Below we will use the recent compilation from J Prades, E de Rafael, A Vainshtein: $a_{\mu}^{L-by-L} = (10.5 \pm 2.6) \cdot 10^{-10}$
- Similar recent result from F Jegerlehner, A Nyffeler: $a_{\mu}^{L-by-L} = (11.6 \pm 4.0) \cdot 10^{-10}$

II. Recent developments in $(g-2)_{\mu}$: Hadronic VP contributions

• Compilation of $\sigma_{ m had}^0(s)$

- For low energies, need to sum ~ 24 exclusive channels. $[2\pi, 3\pi, KK, 4\pi, \ldots]$
- 1.43 2 GeV: sum exclusive channels or use (old) inclusive data?
- above 2 GeV: inclusive data *and/or* use of perturbative QCD.
- In each channel: Data combination from many experiments, non-trivial w.r.t. error analysis/correlations/different energy ranges.

[HLMNT use adaptive binning and non-linear $\chi^2_{
m min}$ fit with full cov.-matrices.]

- Note: $\sigma^{0}(s)$ must be the *undressed* hadronic cross section (i.e. photon VP *subtracted* $[\sigma^{0}(s) = \sigma(s) \cdot (\alpha/\alpha(s))^{2}]$, otherwise double-counting with $a_{\mu}^{\text{had,VP NLO}}$)
- but must include final state photon radiation.
- → Uncertainty in treatment of radiative corrections, especially for older data sets! Assign additional error. HLMNT: $\delta a_{\mu}^{\text{had,VP+FSR}} \simeq 2 \times 10^{-10} \ [\sim 10 \cdot \Delta a_{\mu}^{\text{EW}}]$

Most important channels with changes in input data since ${\sim}2006$

The main exps. for 'low' energy hadronic cross sections in e^+e^- ; channels

- CMD-2, [VEPP-2M], Novosibirsk (K^+K^- , $2\pi^+2\pi^-\pi^0$, $2\pi^+2\pi^-2\pi^0$)
- SND, [VEPP-2M], Novosibirsk $(K^+K^-, K_S^0K_L^0)$
- KLOE, [DA Φ NE], Frascati ($\pi^+\pi^-(\gamma)$, $\omega\pi^0$)
- BaBar, [PEP-II], SLAC, Stanford $(\pi^+\pi^-(\gamma), K^+K^-\pi^0, K_S^0\pi K, 2\pi^+2\pi^-\pi^0, K^+K^-\pi^+\pi^-\pi^0, 2\pi^+2\pi^-\eta, 2\pi^+2\pi^-2\pi^0)$
- BELLE, [KEKB], KEK, Tsukuba
- BES, [BEPC], Beijing (inclusive $R = \sigma(e^+e^- \rightarrow hadrons) / \sigma(e^+e^- \rightarrow \mu^+\mu^-)$ data)
- CLEO, [CESR], Cornell (inclusive R)
- In principle inclusion of new data in updated analysis straightforward..

Concentrate on two cases where not: most important 2π and the 1.43 - 2 GeV region.

The most important 2π channel (> 70%) 879 d

Zoom in low energy (2π threshold) and ρ -peak / ρ - ω interference region

- 'Direct Scan': Very good agreement between data from CMD-2 and SND, fully consistent with earlier data.
- Low energy points crucial for recent improvements of $a_{\mu}^{\pi\pi}$.
- 'Radiative Return': KLOE and BaBar show slight tension with the Direct Scan data, and with each other;
- \rightarrow Differences in shape and BaBar high at medium and higher energies:

KLOE 09/10 and BaBar 09 $\pi\pi(\gamma)$ Radiative Return data compared to combination of all

Radiative Return (at fixed e^+e^- energy) has recently developed (TH + EXP) into a powerful method with great potential, complementary to direct energy scan!

Normalised difference of cross sections:

• New method used by 'meson factories', where high statistics compensates α/π suppression of γ radiation.

- Results for 2π channel slightly different in shape, but completely different method, Monte Carlos etc.
- → HLMNT 10: Combination of all data, including the latest KLOE 10 set, on the same footing, i.e. before integration (yellow band). [Still good χ^2_{\min} /d.o.f. ~ 1.5 of the overall 2π combination fit.]

HLMNT 10 (prel.): $a_{\mu}^{2\pi}(0.32 - 2 \,\text{GeV}) = (504.23 \pm 2.97) \cdot 10^{-10}$ [RadRet. data pull a_{μ} up by ~ 5.5 units!]

- What about the au data?
- CVC hypothesis (isospin-symm.) connects $au^-
 ightarrow \pi^- \pi^0
 u_{ au}$ to $e^+ e^-
 ightarrow
 ho, \omega
 ightarrow \pi^+ \pi^-$
- Sizeable isospin-symmetry violations [from radiative corrections, mass differences $(m_{\pi^-} \neq m_{\pi^0}), \ \rho - \omega \text{ interf.}]$ $(\rightarrow \text{Cirigliano+Ecker+Neufeld})$
- Role of possible $\rho^0 \rho^{\pm}$ mass difference?
- Width difference $\Gamma_{\rho^0} \neq \Gamma_{\rho^{\pm}}$? Large effects possible! How reliable are the model calculations?

S Eidelman (ICHEP06): au compared to e^+e^- data

- \rightarrow Disagreement between τ and e^+e^- data already for $[B_{\tau} B_{CVC}]_{\pi\pi^0}$: up to 4.5 σ ?!
- \hookrightarrow Is everything under control at the % level? Is something wrong with data? H^- ?
 - KLOE Rad. Ret. agrees much better with e^+e^- scan experiments, BaBar somewhat;
- \rightarrow Recent work of Davier et al. gives better agreement:

Fig. from Davier et al., EPJC66 (2010) 1

 \rightarrow Disagreement between τ and e^+e^- data less severe than previously but still not solved.

→ Work from Benayoun et al. [EPJC55 (2008) 199; C65 (2010) 211, C68 (2010) 355]:
 mixing + isospin breaking effects in model based on *Hidden Local Symmetry* → τ compatible with and confirm e⁺e⁻ ?!

▶ :-(Not only) our choice: better not use τ data for g - 2 predictions.

Region below 2 GeV: influence of recent BaBar Radiative Return analyses

 $K^+K^-\pi^0$ channel

Big improvements over earlier data compilations in many channels. $[\rightarrow Malaescu]$ \rightarrow

BaBar Radiative Return data lower than less precise older data in most channels.

Region below 2 GeV: influence of recent BaBar Radiative Return analyses

(contd)

 $2\pi^+2\pi^-\pi^0$ channel

 \rightarrow BaBar lower in $2\pi^+2\pi^-\pi^0$ channel, fit responds by bad $\chi^2_{\rm min}$ \rightarrow Errors for g-2 'inflated' by $\sqrt{\chi^2_{\min}/d.o.f.}$ [scaling up by 1.29 here.]

(contd 2)

 \rightarrow Again 'bad' $\chi^2_{\rm min}/{\rm d.o.f.}$ of 2.7 and 2.9. Data not really compatible, inflate error.

Data blue: old excl. analysis, red/orange: new

Sum-rules 'determining' α_S (old):

• Shape similar, but normalisation different

- Question of completeness/quality of sum of exclusive data vs. reliability/systematics of old inclusive data ($\gamma\gamma2$, MEA, M3N, BBbar)
- HMNT previously (2003/06) have used incl. data, in line with sum-rule analysis

Check against perturbative QCD: QCD \sum -rule analysis

$$\int_{C}^{s_0} \mathrm{d}s \, \mathbf{R}(s) f(s) = \int_{C} \mathrm{d}s \, D(s)g(s) \,, \qquad \text{with} \quad D(s) \equiv -12\pi^2 s \frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{\Pi(s)}{s}\right)$$

 $\Re s$

- The Adler D function is calculable in pQCD: $D(s) = D_0(s) + D_m(s) + D_{np}(s)$.
- Take $f(s) = (1 s/s_0)^m (s/s_0)^n$ to maximise sensitivity to the required region, g(s) follows.
- Choose s_0 below the open charm threshold ($n_f = 3$ for pQCD).
- For m = 1, n = 0 one gets e.g.

$$\int_{s_{\rm th}}^{s_0} \mathrm{d}s \, R(s) \left(1 - \frac{s}{s_0} \right) = \frac{i}{2\pi} \int_C \, \mathrm{d}s \, \left(-\frac{s}{2s_0} + 1 - \frac{s_0}{2s} \right) D(s) \, .$$

New sum-rule analysis R: data only

If pQCD for 2 GeV $< \sqrt{s} < \sqrt{s_0}$:

- Changes in data have changed the picture \rightarrow sum over exclusive in line with QCD.
- Still rely on isospin relations for missing channels. [Sizeable error from $K\bar{K}\pi\pi$!]
- For HLMNT 10: Use of more precise sum over exclusive (\hookrightarrow shift up by $\sim +3 \cdot 10^{-10}$).

Perturbative QCD vs. inclusive data above 2 GeV (below charm threshold)

- R_{uds} from pQCD mostly below data fit in region above 2 GeV
- \bullet Latest BES data agree very well with pQCD
- For $2 < \sqrt{s} < 3.7$ GeV we now use pQCD but with (larger) BES errors \hookrightarrow small shift downwards for g 2 ($\sim -1.4 \cdot 10^{-10}$) and $\Delta \alpha$

The different SM contributions numerically

Source	contr. to $a_{\mu} imes 10^{11}$	remarks	
QED	116 584 718.08 \pm 0.15	up to 5-loop (Kinoshita+Nio, Passera)	
	(was $116\ 584\ 719.35\pm1.43$)	\blacktriangleright incl. recent updates of α	
EW	154 ± 2	2-loop, Czarnecki+Marciano+Vainshtein	
		(agrees very well with Knecht+Peris+Perrottet+deRafael)	
LO hadr.	$7053 \pm 39 \pm 7 \pm 7 \pm 19$	Davier <i>et al.</i> '09 (au)	
	$6955 \pm 40 \pm 7$	Davier <i>et al.</i> '09 (e^+e^-)	
	$6894 \pm 42 \pm 18$	Hagiwara+Martin+Nomura+T '06	
new:	$6951\pm40\pm21$	HLMNT 10 (prel.), incl. BaBar 09 and KLOE 09/10 2π	
NLO hadr.	$-98.2\pm0.7\pm0.4$	HLMNT, in agreem. with Krause '97, Alemany+D+H '98	
L-by-L	105 ± 26	Prades+deRafael+Vainshtein	
agrees with	$< 159~(95\%{ m CL})$	upper bound from Erler+Toledo Sánchez from PHD	
< Nov. 2001:	(-85 ± 25)	the 'famous' sign error, $2.6\sigma \rightarrow 1.6\sigma$	
\sum	116591830 ± 48	with HLMNT 10 (prel.)	

Now the theory prediction of g-2 is more precise than its measurement from BNL

SM vs BNL: A sign for New Physics?

Covered storage ring (Pic. from the g-2 Collab.)

Various choices w.r.t. data, way to compile, au (?!), L-by-L: $a_{\mu}^{
m SM}$ always stays $< a_{\mu}^{
m EXP}$

 $a_{\mu}^{\rm SM}$ compared to BNL world av.

Recent changes

TH: Improved LO hadronic (from e^+e^-)

[Many new data from CMD-2, SND, KLOE, BaBar, CLEO, BES. Now use sum of excl. (BaBar RadRet!) data below 2 GeV.]

 $(6894 \pm 46) \cdot 10^{-11} \longrightarrow (6951 \pm 45) \cdot 10^{-11} \text{ (prel.)}$

- TH: Use of recent L-by-L compilation [PdeRV] $a_{\mu}^{\text{L-by-L}} = (10.5 \pm 2.6) \cdot 10^{-10}$
- EXP: Small shift of BNL's value due to CODATA's shift of muon to proton magn. moment ratio: Was $a_{\mu} = 116~592~080(63) \times 10^{-11}$
 - $\rightarrow a_{\mu} = 116\ 592\ 089(63) \times 10^{-11}\ (0.5ppm)$
 - ► With this input HLMNT get $a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{TH}} = (25.9 \pm 8.1) \cdot 10^{-10}$, ~ **3.2** σ

SUSY contributions in a_{μ} ?

They mainly come from:

 m_0 (GeV)

 \rightarrow SUSY is a good candidate to explain $\Delta a_{\mu}=a_{\mu}^{\rm EXP}-a_{\mu}^{\rm SM}$, but

- no chargino at LEP
- so far no light Higgs
- limits on lightest charged SUSY part.
- \bullet + limits from direct searches
- \bullet SPS 1a' in 1σ band from g-2
- → Many other BSM scenarios, like e.g. Universal Extra Dimensions, seem a less natural solution.

 $a_{\mu}^{\text{SUSY},1-\text{loop}} \simeq \frac{\alpha}{8\pi \sin^2 \theta_W} \tan \beta \operatorname{sign}(\mu) \frac{m_{\mu}^2}{M_{\text{CUCV}}^2}$

 $\tan\beta = 10, \mu > 0, A_0 = -300 \text{ GeV}, m_t = 171.4 \text{ GeV}$

III. The 'running coupling' $\alpha_{\rm QED}(q^2)$ and the Higgs mass

- Vacuum polarisation leads to the 'running' of α from $\alpha(q^2=0)~=~1/137.035999084(51)$ to $\alpha(q^2=M_Z^2)\sim 1/129$
- $\alpha(s) = \alpha / (1 \Delta \alpha_{\text{lep}}(s) \Delta \alpha_{\text{had}}(s))$
- Again use of a dispersion relation: $\Delta \alpha_{\text{had}}^{(5)} = -\frac{\alpha s}{3\pi} P \int_{s_{\text{th}}}^{\infty} \frac{R_{\text{had}}(s') \, ds'}{s'(s'-s)}$

- Hadronic uncertainties $\rightsquigarrow \alpha$ is the least well known Electro-Weak SM parameter of $[G_{\mu}, M_Z \text{ and } \alpha(M_Z^2)]$!
- We find: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02759 \pm 0.00015$ i.e. $\alpha (M_Z^2)^{-1} = 128.953 \pm 0.020$ (HLMNT 10 prel.)

• M_H moves further down with new $\Delta \alpha$.

IV. Outlook / Conclusions

Where is improvement needed most urgently? Hadronic VP still the biggest error in $a_{\mu}^{\rm SM}$

Pie diagrams of contributions to a_{μ} and $\alpha(M_Z)$ and their errors²: enjoy!

- $(g-2)_{\mu}$ strongly tests all sectors of the SM and constrains possible physics beyond.
- Recently new data from Novosibirsk (CMD-2 and SND), Beijing (BES), Cornell (CLEO), and Frascati (KLOE) and SLAC (BaBar) using the new method of *Radiative Return*, have led to improvements and consolidation of aSM_µ.
- With the same data compilation as for g-2, also the hadronic contributions to $\Delta \alpha(q^2)$ have been determined; in turn $\alpha(M_Z^2)$ has been improved considerably. M_H !?
- Interaction of TH + MC + EXP is most important to achieve even higher precision
 → join the WG Radio Montecar Low. → Satellite meeting this Sat.+Sun. in Liverpool
- **Discrepancy** betw. the SM pred. of g-2 and the BNL measurement persists at $> 3 \sigma$.
- SUSY could, quite naturally, explain the discrepancy; SUSY parameter space already strongly constrained by g - 2.
- ▶ New g 2 experiments planned at Fermilab and J-PARC. [→ Roberts and Mibe]
- ► Will a_{μ}^{SM} match the planned accuracy? \rightarrow Light-by-Light may become limiting factor!

The coming years will be exciting, and not only for the LHC

Extras:

$\Delta lpha(q^2)$: Vacuum Polarisation in the space- and time-like

Why Vacuum Polarisation / running $oldsymbol{lpha}$ corrections ?

Precise knowledge of VP / $\alpha(q^2)$ needed for:

- Corrections for data used as input for g - 2: 'undressed' σ_{had}^0 $a_{\mu}^{\text{had,LO}} = \frac{1}{4\pi^3} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, \sigma_{\text{had}}^0(s) K(s) \,, \quad \text{with } K(s) = \frac{m_{\mu}^2}{3s} \cdot (0.63 \dots 1)$

- Determination of α_s and quark masses from total hadronic cross section R_{had} at low energies and of resonance parameters.
- Part of higher order corrections in Bhabha scattering important for precise Luminosity determination.
- $\alpha(M_Z^2)$ a fundamental parameter at the Z scale (the least well known of $\{G_\mu, M_Z, \alpha(M_Z^2)\}$), needed to test the SM via precision fits/constrain new physics.
- \rightarrow Ingredient in MC generators for many processes.

• Dyson summation of Real part of one-particle irreducible blobs Π into the effective, real running coupling α_{QED} :

$$\Pi = \bigwedge_{q}^{q^*} (\mathbf{x}_{q})^{\mathbf{x}_{q}} (\mathbf{x$$

Full photon propagator $\sim 1 + \Pi + \Pi \cdot \Pi + \Pi \cdot \Pi \cdot \Pi + \dots$

$$\rightsquigarrow \qquad \alpha(q^2) = \frac{\alpha}{1 - \operatorname{Re}\Pi(q^2)} = \alpha / \left(1 - \Delta \alpha_{\operatorname{lep}}(q^2) - \Delta \alpha_{\operatorname{had}}(q^2)\right)$$

• The Real part of the VP, $\text{Re}\Pi$, is obtained from the Imaginary part, which via the *Optical* Theorem is directly related to the cross section, $\text{Im}\Pi \sim \sigma(e^+e^- \rightarrow hadrons)$:

$$\begin{split} \Delta \alpha_{\rm had}^{(5)}(q^2) &= -\frac{q^2}{4\pi^2 \alpha} \operatorname{P} \int_{m_{\pi}^2}^{\infty} \frac{\sigma_{\rm had}^0(s) \, \mathrm{d}s}{s - q^2} \,, \quad \sigma_{\rm had}(s) = \frac{\sigma_{\rm had}^0(s)}{|1 - \Pi|^2} \\ \left[\to \sigma^0 \text{ requires 'undressing', e.g. via } \cdot (\alpha/\alpha(s))^2 \, \rightsquigarrow \, \text{ iteration needed} \right] \end{split}$$

• Observable cross sections σ_{had} contain the |full photon propagator|², i.e. |infinite sum|². \rightarrow To include the subleading Imaginary part, use dressing factor $\frac{1}{|1-\Pi|^2}$. Comparison of different compilations

• Timelike $\alpha(s)$ from Fred Jegerlehner's (2003 routine as available from his web-page)

$$\alpha(s = E^2) = \alpha / \left(1 - \Delta \alpha_{\rm lep}(s) - \Delta \alpha_{\rm had}^{(5)}(s) - \Delta \alpha^{\rm top}(s)\right)$$

Figure from Fred Jegerlehner

• HMNT's evaluation of $\alpha_{\rm QED}(q^2)$ compared to other parametrisations:

- Differences between parametrisations clearly visible but within error band (of HMNT)
- Few-parameter formula from Burkhardt+Pietrzyk slightly 'bumpy' but still o.k.
- What is in your MC?

Timelike $\alpha(s = q^2 > 0)$ follows resonance structure:

- Step below just a feature of unfortunate grid.
- Difference below 1 GeV not expected from data.

[Comparisons with other parametrisations confirm HMNT.]

• HMNT compared to Novosibirsk's new parametrisation

Timelike $|1 - \Pi(s)|^2 \sim (\alpha(s)/\alpha)^2$ in ρ central energy region: A relevant correction!

(Different sign and prefactor, $-e^2$, used for Π by HMNT.)

 \rightarrow Small but visible differences, as expected from independent compilations.

• HMNT compared to Novosibirsk – Timelike, $\Delta lpha(q^2)$

 \rightarrow Differences of about one per-mille in the 'undressing' factor, up to -3/+5 per-mille in the $\rho - \omega$ interference regime, but likely to cancel at least partly in applications.

 \rightarrow As expected small contributions from ${\rm Im}\Pi.$

What about $\Delta lpha (M_Z^2)?$

→ With the same data compilation of σ_{had}^0 as for g - 2 HLMNT find: $\Delta \alpha_{had}^{(5)}(M_Z^2) = 0.02760 \pm 0.00015$ (HLMNT 09 prelim.) i.e. $\alpha (M_Z^2)^{-1} = 128.947 \pm 0.020$ [HMNT '06: $\alpha (M_Z^2)^{-1} = 128.937 \pm 0.030$]

Earlier compilations:

Group	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$	remarks
Burkhardt+Pietrzyk '05	0.02758 ± 0.00035	data driven
Troconiz+Yndurain '05	0.02749 ± 0.00012	pQCD
Kühn+Steinhauser '98	0.02775 ± 0.00017	pQCD
Jegerlehner '08	0.027594 ± 0.000219	data driven/pQCD
$(M_0=2.5~{ m GeV})$	0.027515 ± 0.000149	Adler fct, pQCD
HMNT '06	0.02768 ± 0.00022	data driven

Adler function:
$$D(-s) = \frac{3\pi}{\alpha} s \frac{d}{ds} \Delta \alpha(s) = -(12\pi^2) s \frac{d\Pi(s)}{ds}$$

allows use of pQCD and minimizes dependence on data.

$\delta\left(\Delta \alpha_{ m had}^{(5)}(s) ight)$ of HMNT compilation

Error of VP in the timelike regime at low and higher energies:

 \rightarrow Below one per-mille (and typically $\sim 5 \cdot 10^{-4}$), apart from Narrow Resonances where the bubble summation is not well justified.