Manchester, UK

Tau 2010

Sept. 13-17, 2010

$\begin{array}{l} \textbf{UHE} \ \textbf{v}_{\tau} \ \textbf{Search} \\ \textbf{in IceCube} \end{array}$

Seon-Hee Seo

Stockholm University for IceCube

<u>Outline</u>

- 1. General: astro. / atm. v
- 2. IceCube
- 3. UHE v_{τ} search in IceCube (IC22)

Why "Neutrinos" from Sky?

- Protons get bent below 10 EeV.
- Protons are strongly attenuated above 50 EeV (GZK cut-off).
- Photons get absorbed (or pair-production) above 50 TeV.
- Neutrinos cover all energy range, point back, but hard to detect.
- --> need very large (Km³ scale) "Neutrino Telescope"

Astrophysical Neutrinos

Km³ scale neutrino telescopes are especially targeted for <u>Galactic & extra-galactic sources:</u> SNRs, AGNs, GRBs, etc... and GZK (induced) neutrinos

Production mechanism:

- -- Astrophysical engine powers jets
- -- Shock waves propagate through surrounding medium
- -- Particles scatter repeatedly off shocks
 - --> Fermi acceleration
 - --> very efficient, universal power law

$$\frac{dN}{dE} \sim E^{-2}$$

$$p + (p \text{ or } \gamma) \rightarrow \pi^0 \rightarrow \gamma \gamma$$

$$\rightarrow \pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} \rightarrow e^{\pm} \nu_e \nu_{\mu}$$

Seo, Stockholm U

Atmospheric Neutrinos

Background for astrophysical neutrinos!

(E spectrum: softer in high energy region)

Conventional v: $p + p \rightarrow \pi^{-} / \pi^{+} \rightarrow \mu \nu_{\mu} \rightarrow (e) \nu_{e} \nu_{\mu} \nu_{\mu}$ $\nu_{e} : \nu_{\mu} : \nu_{\tau} = 1 : 2 : 0$

Prompt v:

Prompt decay of charmed hadrons

$$\begin{array}{rccc} D^+ & \to & \overline{K^0} + l^+ + \nu_l \\ D^0 & \to & K^- + l^+ + \nu_l \\ \Lambda_c & \to & \Lambda_0 + l^+ + \nu_l. \end{array}$$

Seo, Stockholm U

Prompt neutrino flux takes over between 10⁵ - 10⁶ GeV, and harder. The cross-over energy increases with zenith angle.

Neutrino Detection Window

Tau Neutrino Properties

Halzen and Saltzberg PRL 81, 4305

Regeneration:

due to short lifetime of tau (~ 3×10⁻¹³ sec)

Tau decay modes:

τ	>	$\nu_{\tau} X$	(~65%)
τ	>	$\nu_{\tau} \nu_{e} e$	(~18%)
τ	>	$\nu_{\tau} \nu_{\mu} \mu$	(~17%)

Tau decay length ≠ Tau range ★ Due to tau energy loss while passing through material

More dense (more E loss), Less τ/μ range

IceCube Construction Status

Tau Neutrinos in IceCube

Motivation

- + "Intrinsic" cosmological v_{τ} flux is almost negligible, but neutrinos should oscillate over cosmological distances: look for "oscillated" cosmological v_{τ} (add a new window)
- + IceCube's capability to detect all flavors ($v_{e'}$, v_{μ} , v_{τ})!
- + Almost (atmospheric v) background free.

Tau 2010

Seo, Stockholm U

Simulated Tau neutrinos

IC22 = IceCube 22 strings

IC86 = IceCube 86 strings

(look p. 12 for the geometry)

Tau 2010

IC22 UHE Analysis Strategy

Cut & Count method

Remove atm. BG until signal (UHE ν) gets prominent.

UHE L0: remove certain Brem. Muons localQDensity > 5

UHE L1: remove down-going events <Z>init < 450 m & <V>z > -0.1

UHE L2: select contained cascade-like events <Z> > -330 m & TOI_evalratio > 0.1

UHE L3: energy related cut IRmax >= 200 and log10(npe) > 4.2 (MRF optimized cut)

Cut: IRmax (Current Ratio Max.)

Cut Efficiency

18

Expected Events at Final Cut

Signal (all flavor):	3.18 events	in 200 live days (WB)
BG (atm. μ , atm. ν):	0.76 events	in 200 live days

Event type	Spectrum	Flux model	Live time	#. Events at final cut	Efficiency relative to filter
NuTau	∝ E ⁻²	WB	200 d	0.97	11 %
NuMu	∝ E ⁻²	WB	200 d	0.64	3.1 %
NuE	∝ E ⁻²	WB	200 d	1.57	23 %
All Nu		prompt	200 d	0.25	2.2 %
NuMu + NuE		Bartol	200 d	0.05	0.16 %
Atm. muons			200 d	0.46	3.2E-6 %
S.Pole (30%)			82.4 d	0	

** Signal efficiency will improve as detector gets larger and with sophisticated reconstruction method.

IC22 UHE Sensitivity

$E^2 \Phi_v < 6.54 \times 10^{-8} \text{ GeV cm}^{-2}\text{s}^{-1}\text{st}^{-1}$ (all flavor, preliminary)

90% CL 5.53 < Log10(E/GeV)_{90%} < 8.30

The 3 Events (After unblinding IC22 data)

Looks like a horizontal event?

This event is suspected as detector glitch. (Amanda flashing OM # 531)

-- Systematic study on going.

-- limit will be set soon.

Tau 2010

Seen also by other diffuse analyses (good cascade -like event).

Summary and outlook

- * IC22 DB/LP search were based on topology of the events.
- * It resulted in almost equally sensitive to all flavors, but with an interesting result.
- * We will use full reconstruction for future analysis.
- * IC86 DB/LP search will be more promising.
- * Double pulse, Tau --> mu channels are being under-study.

Thank you!

Backup slides

Caution: rough estimation!

Preliminary:							
Expected golden (DB + LP + ILP) events in 5 years live time							
Model	IC22 trigg	IC22 final	IC86 trigg	IC86 final			
WB	1.87	0.87	9.44	4.39			
SS95							
-blaz	38.1	14.5	74.4	28.3			

Cut: Local Charge Density

