The 11th International Workshop on Tau Lepton Physics Manchester, UK, 13-17 September 2010

Studies of hadronic states containing kaons in τ decays at BaBar

Aleksandra Adametz Heidelberg University (on behalf of the BaBar collaboration)

1

Outline

publication

in preparation

• Study of $\tau \rightarrow \overline{K}^0 \pi^- \nu_{\tau}$

Presented at TAU2008:

 \rightarrow Measurement of $B(\tau^{-} \rightarrow \overline{K}^{0} \pi^{-} \nu_{\tau})$

Since TAU2008:

 \rightarrow Measurement of $B(\tau \rightarrow \overline{K}^0 \pi \overline{\tau} \pi^0 \nu_{\tau})$

 \rightarrow Measurement of mass and width of K*(892)

• Study of $\tau \rightarrow K^{-}(/\pi / e / \mu) v_{\tau}$

published in Phys. Rev. Lett 105, 051602 (2010)

Analysis presented today in

lepton universality session:

and K at BaBar – R. Sobie

(University of Victoria)

Measurement of one-prong tau branching fractions to e, mu, pi

RABAR

preliminar

 $\rightarrow \text{Measurement of } B(\tau^- \rightarrow K^- \nu_{\tau}) \text{ and } \frac{B(\tau^- \rightarrow K^- \nu_{\tau})}{B(\tau^- \rightarrow \pi^- \nu_{\tau})}$

 \rightarrow Determination of |Vus|

Strange τ Decays

- Sensitive to |Vus| and ms
- \bullet Access to K/ π form factors
- Largest branching fractions:

$$B(\tau^{-} \to \overline{K}^{0} \pi^{-} \nu_{\tau})$$
$$B(\tau^{-} \to \overline{K}^{-} \nu_{\tau})$$

τ dataset at BaBar: $σ_{ττ} = 0.9 \text{ nb},$ ($σ_{BB} = 1.1 \text{ nb}$) $\pounds = 531 \text{ fb}^{-1}$ → 488 million ττ pairs

hadronic system in $\tau \to X_S \nu$	BF [%]	B-factories contributions
κ-	0.696 ± 0.010	BABAR 2010
$K^{-}\pi^{0}$	0.431 ± 0.015	BABAR 2007
$\mathcal{K}^{-}\pi^{0}\pi^{0}(ex.\mathcal{K}^{0})$	0.060 ± 0.022	
$K^{-}\pi^{0}\pi^{0}\pi^{0}(ex.K^{0},\eta)$	0.044 ± 0.022	
$\overline{\kappa}^0 \pi^-$	0.827 ± 0.018	Belle 2008, <i>B</i> ABAR 2008
$\overline{\kappa}^0 \pi^- \pi^0$	0.349 ± 0.015	BABAR 2009 prelim.
$\overline{K}{}^0\pi^-\pi^0\pi^0$	0.023 ± 0.023	
$K^0h^-h^+h^-$	0.023 ± 0.020	
$K^-\pi^-\pi^+(ex.K^0)$	0.294 ± 0.007	<i>B</i> ABAR 2008, Belle 2010
$K^{-}\pi^{-}\pi^{+}\pi^{0}(ex.K^{0},\eta)$	0.075 ± 0.012	
$K^{-}\eta$	0.016 ± 0.001	Belle 2009
$K^-\eta\pi^0$	0.0048 ± 0.0012	Belle 2009
$\overline{K}^0\eta\pi^-$	0.0094 ± 0.0015	Belle 2009
$K^-K^+K^-$	0.0022 ± 0.0001	Belle 2006, BABAR 2007
$K^- K^0 \overline{K}^0$ from $K^- K^+ K^- \cdot \frac{\phi \to K^0 \overline{K}^0}{\phi \to K^+ K^-}$	0.0015 ± 0.0001	$(K^-\phi, \phi \to K^+K^- \text{ saturates } K^-K^+K^-)$
TOTAL using only tau's	2.8570 ± 0.0582	error also depends on correlations
(BRs obtained by HFAG unconstrained fit (ICHEP2010) χ^2 /d.o.f = 155/114)		

ICHEP 2010 $\tau \rightarrow X_s v$

Study of $\tau \rightarrow \overline{K}_{s}^{0} \pi^{-} \nu_{\tau}$: Motivation

• A BaBar measurement of the branching fraction of $\tau^{-} \rightarrow \overline{K}^{0} \pi^{-} \nu_{\tau}$ was presented at the TAU08 (arxiv:0808.1121v2 [hep-ex]):

 $B = (0.840 \pm 0.004 \text{ (stat.)} \pm 0.023 \text{ (syst.)})\%$

which is consistent with the PDG 2009 value:

 $B_{pdg} = (0.831 \pm 0.030)\%$

- A fit to the Ksπ mass spectrum allows a precise measurement of the mass and width of the dominant vector resonance K*(892).
- Belle measured the K*(892)⁻ mass and width, including two further resonances (K*₀(800) and K*(1410)) in the fit.
 (Phys.Lett.B 654:65-73, 2007)

Study of $\tau^- \rightarrow \overline{K}^0_s \pi^- \nu_{\tau}$: Overview

- Reconstruct $\tau \rightarrow \overline{K}^0_S \pi \overline{\nu}_\tau$ decay
 - \rightarrow lepton tag
 - \rightarrow displaced vertex of Ks
 - \rightarrow veto neutral deposits larger than 0.1 GeV in signal hemisphere
- The $\tau^- \rightarrow \overline{K}^0_S \pi^- \pi^0 \nu_{\tau}$ decay is a peaking background in the K*(892) mass region in the $\tau^- \rightarrow \overline{K}^0_S \pi^- \nu_{\tau}$ mass spectrum
 - \rightarrow measure $\tau^{-} \rightarrow \overline{K}_{S}^{0} \pi^{-} \pi^{0} \nu_{\tau}$ hadronic mass spectra
 - \rightarrow tune MC to describe the spectra
 - \rightarrow use tuned MC in $\tau^- \rightarrow \overline{K}^0_S \pi^- \nu_{\tau}$ measurement
- Perform a fit to the hadronic mass spectrum of $\tau \rightarrow \overline{K}_{S}^{0} \pi^{-} \nu_{\tau}$

Measurement of $\tau \rightarrow \overline{K}_{s}^{0} \pi^{-} \pi^{0} \nu_{\tau}$

Measurement of $\tau^- \rightarrow \overline{K}_s^0 \pi^- \pi^0 \nu_{\tau}$

Stringent π^0 selection to obtain high purity:

- exactly one π^0
- high π^0 energy required in CMS (>1.2GeV)

 \rightarrow signal purity: 93%

Measurement of $\tau \rightarrow \overline{K}_{s}^{0} \pi^{-} \pi^{0} \nu_{\tau}$

- τ Monte Carlo hadronic mass distribution tuned with data
- Dominant systematic uncertainty:
 - π^0 reconstruction efficiency
 - → contribution to uncertainty on branching fraction: 0.011% (rel. 3.2%)

arXiv:0910.2884v1

$$B(\tau \to \bar{K}^0 \pi^- \pi^0 \nu_{\tau}) = [0.342 \pm 0.006(stat.) \pm 0.015(syst.)]\%$$

Uncertainty improved by a factor of 2 with respect to PDG 2009 value $(\sigma_{rel} (this) = 4.7\%, \sigma_{rel} (PDG2009) = 11.1\%)$

$|V_{us}|$ from inclusive $\tau \rightarrow s$

Fit to mass spectum of $\tau^- \rightarrow \overline{K}_s^0 \pi^- \nu_{\tau}$

Method:

- Tuned $\tau \rightarrow \overline{K}^0_S \pi^- \pi^0 \nu_{\tau}$ MC is used
- A function which reflects the limited resolution and efficiency of the detector is convoluted with the signal PDF
- Several different fit models are investigated
- Terms to include uncertainties in rates and shapes of background are included in the χ^2 -minimization
 - \rightarrow background shapes/rates differ in each fit model
 - \rightarrow background subtracted data spectra are different in each fit model

Signal PDF

Same PDF as Belle (Phys.Lett.B 654:65-73, 2007)

$$f(m;\vec{\theta}) \propto \frac{1}{s} \left(1 - \frac{s}{m_{\tau}^2}\right) \left(1 + 2\frac{s}{m_{\tau}^2}\right) P\left(P^2 |F_V|^2 + \frac{3(m_K^2 - m_{\pi}^2)^2}{4s(1 + 2\frac{s}{m_{\tau}^2})} |F_S|^2\right)$$

s = m²

Vector form factor

$$F_{V} = \frac{1}{1 + \beta + \gamma + \cdots} [BW_{K^{1}}(s) + \beta BW_{K^{2}}(s) + \gamma BW_{K^{3}}(s) + \cdots]$$

Scalar form factor

$$F_S = \varkappa \frac{s}{M_{K_0^*(800)}^2} BW_{K_0^*(800)}(s) + \lambda \frac{s}{M_{K_0^*(1430)}^2} BW_{K_0^*(1430)}(s)$$

Fit to mass spectrum (I)

$$\chi^2 / ndf = 399.8/97$$

Prob. < 0.0001

Fit to mass spectrum (II)

Fit model:

K*(892) + K*(1410)

$$\chi^2 / ndf = 130.0/95$$

Prob. = 0.0098

Fit to mass spectrum (III)

K*(800) mass and width from BES collaboration (Phys.Lett.B633:681-690,2006)

Fit model:

K*(892) + K*(1410) + K*(800)

$$\chi^2 / ndf = 113.0/94$$

Prob. = 0.0880

Sytematic uncertainties

- Fit method (dominant for mass measurement) :
 - \rightarrow check method by fit to signal MC
 - \rightarrow resulting mass and width differ slightly from input values
 - \rightarrow additive correction
 - \rightarrow statistical error of correction contributes to systematic uncertainty

• Fit model

Differences between models with different resonances, and similar fit goodness are taken as source of systematic uncertainties

- Detector response matrix:
 - \rightarrow parameters are varied
- Uncertainties in background rates Shape parameters for $\tau \rightarrow K_S^0 K_L^0 \pi^- v_{\tau}$

enter the statistical uncertainty of the fit

Results

- Best fit model: K*(892) + K*(1410) + K*(800)
- Measured mass and width with best fit model

arXive:0910.2884v1

 $M(K^{*}(892)) = 894.30 \pm 0.19 \text{ (stat.)} \pm 0.19 \text{ (syst.)} MeV/c2$

 $\Gamma(K^*(892)) = 45.56 \pm 0.43 \text{ (stat.)} \pm 0.57 \text{ (stat.)} \text{ MeV/c}$

- Same model as Belle (Phys.Lett.B 654:65-73, 2007)
- Further study of background processes is ongoing

Comparison with other measurements

Babar09, Belle07 and measurements included in PDG2008

|V_{us}| from $B(\tau \rightarrow K \nu_{\tau})$ and

Analysis presented today in lepton universality session: Measurement of one-prong tau branching fractions to e, mu, pi and K at BaBar – R. Sobie (University of Victoria) $B(\tau^{-} \to K^{-} \nu_{\tau}) = (0.692 \pm 0.006 \, (stat.) \pm 0.010 \, (syst.)) \times 10^{-2}$ $\frac{B(\tau^{-} \to K^{-} \nu_{\tau})}{B(\tau^{-} \to \pi^{-} \nu_{\tau})} = (6.531 \pm 0.056 \, (stat.) \pm 0.093 \, (syst.)) \times 10^{-2}$

 $\frac{B(\tau \rightarrow K \nu_{\tau})}{B(\tau \rightarrow \pi \nu_{\tau})}$

Summary

Study of
$$\tau \rightarrow \overline{K}^0 \pi \overline{\nu}_{\tau}$$

- \rightarrow Measurement of the $B(\tau \rightarrow \overline{K}^0 \pi \pi^0 \nu_{\tau})$
 - uncertainty improvement by a factor of two compared with PDG2009
 - \rightarrow Measurement of mass and width of K*(892)
 - Best fit model: K*(892) + K*(1410) + K*(800)
 - Measured mass and width consistent with Belle (2007)

Measurement of
$$\frac{B(\tau^- \to K^- \nu_{\tau})}{B(\tau^- \to \pi^- \nu_{\tau})}$$
 and $B(\tau^- \to K^- \nu_{\tau})$

Backup slides

Constants for |Vus| determination

 $\begin{aligned} & \delta_{LD} = (0.03 \pm 0.44)\% & (arXiv:0811.1429) \\ & |Vud| = 0.97425 \pm 0.00022 & (Towner, Hardy 2009) \\ & f_{K} / f_{\pi} = 1.189 \pm 0.007 & (E. Follana et al. PRL 100) \\ & f_{K} = 157 \pm 2 \text{ MeV} & (E. Follana et al. PRL 100) \\ & S_{EW} = 1.0201 \pm 0.0003 & (J.Erler, Rev. Mex. Fis 50, 200(2004)) \end{aligned}$

Fit to mass spectrum

Alternative Models: (S.Paramesvaran, DPF2009)

- $K^{*}(800) + K^{*}(892) + K^{*}(1430) \chi^{2}/dof = 114.1/94$
- $K^{*}(800) + K^{*}(892) + K^{*}(1680) \chi^{2}/dof = 144.71/94$
- K*(892) + LASS $-\chi^2/dof = 148.38/94$