Recent progress in hadronic τ decays

Perturbative contribution to R_{τ} . Description of $\tau \to \nu_{\tau} K \pi$.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Hadronic au decay rate

Consider the physical quantity R_{τ} : (Braaten, Narison, Pich 1992)

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to \text{hadrons}\,\nu_{\tau}(\gamma))}{\Gamma(\tau^- \to e^- \bar{\nu}_e \nu_{\tau}(\gamma))} = 3.640 \pm 0.010 \,.$$

 R_{τ} is related to the QCD correlators $\Pi^{T,L}(x)$: $(x \equiv s/M_{\tau}^2)$

$$R_{\tau} = 12\pi \int_{0}^{1} dx (1-x)^{2} \left[(1+2x) \operatorname{Im}\Pi^{T}(x) + \operatorname{Im}\Pi^{L}(x) \right],$$

with the appropriate combinations

$$\Pi^{J}(x) = |V_{ud}|^{2} \Big[\Pi^{V,J}_{ud} + \Pi^{A,J}_{ud} \Big] + |V_{us}|^{2} \Big[\Pi^{V,J}_{us} + \Pi^{A,J}_{us} \Big]$$

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Additional information can be inferred from the moments

$$R_{\tau}^{kl} \equiv \int_{0}^{1} dx \, (1-x)^{k} x^{l} \, \frac{dR_{\tau}}{dx} = R_{\tau,V}^{kl} + R_{\tau,A}^{kl} + R_{\tau,S}^{kl} \, .$$

Theoretically, R_{τ}^{kl} can be expressed as:

$$R_{\tau}^{kl} = N_{c} S_{\text{EW}} \left\{ (|V_{ud}|^{2} + |V_{us}|^{2}) \left[1 + \delta^{kl(0)} \right] + \sum_{D \ge 2} \left[|V_{ud}|^{2} \delta_{ud}^{kl(D)} + |V_{us}|^{2} \delta_{us}^{kl(D)} \right] \right\}.$$

 $\delta_{ud}^{kl(D)}$ and $\delta_{us}^{kl(D)}$ are corrections in the Operator Product Expansion, the most important ones being $\sim m_s^2$ and $m_s \langle \bar{q}q \rangle$.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Adler function

The perturbative part $\delta^{(0)}$ is related to the Adler function D(s):

$$D(s) \equiv -s \frac{\mathrm{d}}{\mathrm{d}s} \Pi_{\mathbf{V}}(s) = \frac{N_c}{12\pi^2} \sum_{n=0}^{\infty} a_{\mu}^n \sum_{k=1}^{n+1} k c_{n,k} \ln^{k-1} \left(\frac{-s}{\mu^2}\right)$$

where $a_{\mu} \equiv \alpha_s(\mu)/\pi$.

Resumming the Log's with the scale choice $\mu^2 = -s \equiv Q^2$:

$$D(Q^{2}) = \frac{N_{c}}{12\pi^{2}} \sum_{n=0}^{\infty} c_{n,1} a^{n}(Q^{2})$$

As a consequence, only the coefficients $c_{n,1}$ are independent:

$$c_{0,1} = c_{11} = 1$$
, $c_{2,1} = 1.640$, $c_{3,1} = 6.371$,

 $c_{4,1} = 49.076 \, !!$ (Bail

(Baikov, Chetyrkin, Kühn 2008)

Recent progress in hadronic au decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Fixed order perturbation theory amounts to choose $\mu^2 = M_{\tau}^2$:

$$\delta_{\text{FO}}^{(0)} = \sum_{n=1}^{\infty} a^n (M_{\tau}^2) \sum_{k=1}^{n+1} k \, c_{n,k} J_{k-1} = \sum_{n=1}^{\infty} [c_{n,1} + g_n] a^n (M_{\tau}^2)$$

A given perturbative order n depends on all coefficients $c_{m,1}$ with $m \leq n$, and on the coefficients of the QCD β -function.

Contour improved perturbation theory employs $\mu^2 = -M_{\tau}^2 x$: (Pivovarov; Le Diberder, Pich 1992)

$$\delta_{\text{CI}}^{(0)} = \sum_{n=1}^{\infty} c_{n,1} J_n^a(M_{\tau}^2)$$
 with

$$J_n^a(M_{\tau}^2) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1-x)^3 (1+x) a^n (-M_{\tau}^2 x)$$

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Numerical analysis

Employing $\alpha_{s}(M_{\tau}) = 0.34$, the numerical analysis results in:

 a^1 a^2 a^3 a^4 a^5 $\delta_{\mathbf{FO}}^{(0)} = 0.108 + 0.061 + 0.033 + 0.017(+0.009) = 0.220(0.229)$ $\delta_{\mathbf{CI}}^{(0)} = 0.148 + 0.030 + 0.012 + 0.009(+0.004) = 0.198(0.202)$ Contour improved PT appears to be better convergent. The difference between both approaches amounts to 0.022! From the uniform convergence of $\delta_{FO}^{(0)}$, and the assumption that the series is not yet asymptotic, one may also infer $c_{5.1} \approx 283$,

leading to a difference of $\delta_{\text{FO}}^{(0)} - \delta_{\text{CI}}^{(0)} = 0.027$.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Borel transform

To further investigate the difference between CI and FOPT, let us consider the Borel-transformed Adler function.

$$4\pi^2 D(s) \equiv 1 + \widehat{D}(s) \equiv 1 + \sum_{n=0}^{\infty} r_n \alpha_s(s)^{n+1},$$

where $r_n = c_{n+1,1}/\pi^{n+1}$. The Borel-transform reads:

$$\widehat{D}(\alpha_s) = \int_0^\infty dt \, \mathrm{e}^{-t/\alpha_s} B[\widehat{D}](t); \quad B[\widehat{D}](t) = \sum_{n=0}^\infty r_n \, \frac{t^n}{n!}$$

Generally, the Borel-transform $B[\widehat{D}]$ developes poles and cuts at integer values p of $u \equiv \beta_1 t/(2\pi)$. (Except at u=1.)

The poles at negative p are called UV renormalon poles and the ones at positive $p \ \rm IR$ renormalons.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Borel model

To proceed, realistic model $B[\widehat{D}](u)$: (Beneke, MJ 2008) $B[\widehat{D}](u) = B[\widehat{D}_{1}^{UV}](u) + B[\widehat{D}_{2}^{IR}](u) + B[\widehat{D}_{3}^{IR}](u)$ $+ d_{0}^{PO} + d_{1}^{PO} u ,$ where $B[\widehat{D}_{p}](u) = \frac{d_{p}}{(p \pm u)^{1+\gamma}} \left[1 + b_{1}(p \pm u) + b_{2}(p \pm u)^{2}\right].$

- Solution of the second state of the second st
- rightarrow It should reproduce the exactly known $c_{\mathbf{n},1}, n \leq 4$.

For both UV and IR, the residues d_p are free while γ , $b_{1,2}$ depend on anomalous dimensions and β -coefficients.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Adler function

Recent progress in hadronic au decays

Matthias Jamin, ICREA & IFAE, UA Barcelona

Central Borel model

$$c_{5,1} = 283$$
, $\alpha_s(M_\tau) = 0.34$.

Recent progress in hadronic au decays

Matthias Jamin, ICREA & IFAE, UA Barcelona

Borel model

 $c_{n,1}$ composition in central Borel model:

	$C_{2,1}$	$C_{3,1}$	$C_{4,1}$	$C_{5,1}$	<i>C</i> _{6,1}
IR_2	-77.8	82.4	100.4	135.9	97.5
IR ₃	152.0	28.7	-10.0	-20.2	-13.3
UV_1	22.5	-11.2	9.7	-15.6	15.8

 $c_{n,1}$ composition in Borel model with $d_2^{\text{IR}} = 0$:

	$C_{2,1}$	C _{3,1}	$C_{4,1}$	$C_{5,1}$	<i>C</i> _{6,1}
IR ₃	-743.3	-140.5	49.1	98.9	99.1
IR_4	662.8	244.2	47.7	6.3	-7.2
UV_1	7.5	-3.7	3.2	-5.2	8.1

Large cancellations occur. Appears unnatural.

Recent progress in hadronic au decays

Matthias Jamin, ICREA & IFAE, UA Barcelona

Recent progress in hadronic au decays

Matthias Jamin, ICREA & IFAE, UA Barcelona

Recent progress in hadronic au decays

Matthias Jamin, ICREA & IFAE, UA Barcelona

Employing the hadronic decay rate into light quarks

$$R_{\tau,V+A} = N_c |V_{ud}|^2 S_{\rm EW} \left[1 + \delta^{(0)} + \delta^{\rm NP}_{V+A} \right]$$

with $\delta_{V+A}^{NP} = (-7.1 \pm 3.1) \cdot 10^{-3}$, one finds

$$\delta^{(0)} = \frac{R_{\tau, V+A}}{3|V_{ud}|^2 S_{\text{EW}}} - 1 - \delta^{\text{NP}}_{V+A} = 0.2042(38)(33)$$

The first uncertainty is due to $R_{\tau,V+A}$, while the remaining error is dominated by δ_{V+A}^{NP} .

Adjusting α_s such as to reproduce $\delta^{(0)}$: (Beneke, MJ 2008)

 $\alpha_{s}(M_{\tau}) = 0.3156(30)(51) \implies \alpha_{s}(M_{Z}) = 0.1180(8)$

Duality violations neglected! See talk by Diogo Boito.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

Viable information can be obtained from the decay spectra for exclusive τ -decay channels.

A first step in this direction is a reliable description of the $\tau \rightarrow \nu_{\tau} K \pi$ decay spectrum: (MJ, Pich, Portolés 2006/08)

(Boito, Escribano, MJ 2008/10) (talk by Emilie Passemar)

$$\frac{d\Gamma_{K\pi}}{d\sqrt{s}} = \frac{G_F^2 |V_{us}|^2 M_{\tau}^3}{32\pi^3 s} \left(1 - \frac{s}{M_{\tau}^2}\right)^2 \times \left[\left(1 + 2\frac{s}{M_{\tau}^2}\right) q_{K\pi}^3 |F_+^{K\pi}(s)|^2 + \frac{3\Delta_{K\pi}^2}{4s} q_{K\pi} |F_0^{K\pi}(s)|^2\right]$$

To this end the $K\pi$ vector and scalar form factors $F_{+}^{K\pi}(s)$ and $F_{0}^{K\pi}(s)$ are required as an input.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

 $K\pi$ form factors

A description of the $K\pi$ vector form factor can be obtained within chiral perturbation theory with resonances (R χ PT):

$$F_{+}^{K\pi}(s) = \frac{m_{K^*}^2}{m_{K^*}^2 - s - \kappa \operatorname{Re}\widetilde{H}_{K\pi}(s) - im_{K^*}\gamma_{K^*}(s)}$$

The parameters of this model, namely m_{K^*} and γ_{K^*} , can be fitted from experimental data for *p*-wave $K\pi$ scattering, or from the τ data.

The physical parameters M_{K^*} and Γ_{K^*} can be inferred from the pole of $F^{K\pi}_+(s)$ in the complex *s*-plane.

Also a second resonance contribution can easily be included.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

 $K\pi$ form factors

The scalar form factor $F_0^{K\pi}(s)$ has been obtained from a dispersion relation analysis of S-wave $K\pi$ scattering data. (MJ, Oller, Pich 2000/02)

As a prediction of the model, we obtain the slope and curvature of the vector form factor $F_{+}^{K\pi}(s)$: (Boito, Escribano, MJ 2010)

 $\lambda'_{+} = (25.49 \pm 0.31) \cdot 10^{-3}, \quad \lambda''_{+} = (12.22 \pm 0.14) \cdot 10^{-4}.$

Results on slope and curvature from K_{l3} decays have been included as a constraint in the fit.

Allows for an improved determination of the phase-space integrals needed in $|V_{us}|$ analysis from K_{l3} .

Belle $K\pi$ spectrum

Recent progress in hadronic au decays

Matthias Jamin, ICREA & IFAE, UA Barcelona

Manchester, Tau 2010

18

FOPT appears to provide the more reliable approach to the perturbative series for $\delta^{(0)}$ while CIPT misses cancellations.

Conclusions

$$\Rightarrow \qquad \alpha_s(M_Z) = 0.1180 \pm 0.0008$$

- Good description of the exclusive decay $\tau \rightarrow \nu_{\tau} K \pi$ allows to extract resonance as well as form factor parameters.
- Better data on exclusive and inclusive τ decay spectra would be very helpful to resolve theoretical issues.

Recent progress in hadronic τ decays Matthias Jamin, ICREA & IFAE, UA Barcelona

FOPT appears to provide the more reliable approach to the perturbative series for $\delta^{(0)}$ while CIPT misses cancellations.

Conclusions

$$\Rightarrow \qquad \alpha_s(M_Z) = 0.1180 \pm 0.0008$$

Good description of the exclusive decay $\tau \rightarrow \nu_{\tau} K \pi$ allows to extract resonance as well as form factor parameters.

Better data on exclusive and inclusive τ decay spectra would be very helpful to resolve theoretical issues.

Thank You for Your attention !

Recent progress in hadronic au decays Matthias Jamin, ICREA & IFAE, UA Barcelona