

SuperB project

- project of high luminosity asymmetric B-factory at Y(4s) peak
- ~100 times more luminosity than BABAR and Belle with similar beam currents (nanobeams)
 - ▶ aimed at collecting 75 ab⁻¹ of data
- 80% polarized electron beam
- ability to also operate ad the charm threshold
- detector is moderately improved BABAR detector
 - smaller beam spot and improved vertex detector resolution
 - same or better B decay length resolution with smaller beam energy asymmetry w.r.t. BABAR
 - more hermetic
- proposed site in Rome (Frascati or Tor Vergata)
- passed all formal reviews, awaiting a decision on funding

Tau Physics in increasingly focused on New Physics searches

LEP experiments and past: more focused on precision measurements

- tau universality
- $\alpha_s(m_\tau)$ from $R_\tau = BF(\tau \to X_h v)/BF(\tau \to e v \overline{v})$
- ► g-2 hadronic contribution
- ♦ B-factories → more focused on NP searches
 Cabibbo suppressed decays
 - ► LFV searches, 2nd class current searches
 - ▶ rare decays, high-multiplicity decays, Cabibbo suppressed decays (V_{us})
 - Iimited progress on many precision measurements also because of remarkable precision of several results by M.Davier ALEPH group...
- Super Flavour factories (in proposal / preparation phase): even more focused on NP searches
 - LFV searches
 - ▶ tau g-2, tau EDM, tau CPV
 - with less priority, 2nd class current searches, mainly a test of QCD predictions
 - high intensity experimental sensitivity to NP can exceed the LHC accessible energy range
 - recent preprint 2010 SuperB Physics Report, arXiv:1008.1541v1 [hep-ex]

Best tau-related new physics probes at SuperB

- preference to mainstream models with experiment-constrained expectations
 - MSSM-seesaw, NUHM SUSY, LHT
- best channels identified comparing NP expectations with SuperB sensitivity
- Lepton Flavor violation in tau decays
 - MSSM-seesaw "naturally" expects some BRs in the sensitivity range of SuperB
 - SuperB is complementary with LHC and MEG
 - ▶ best channels: $\tau \rightarrow \mu \gamma$, $\tau \rightarrow 3\ell$, $\tau \rightarrow \mu \rho$, $\tau \rightarrow \mu \eta$
- ♦ Tau g-2
 - ► if MSSM explains today's $\Delta a_{\mu} \approx 3.10^{-9}$ discrepancy $\rightarrow \Delta a_{\tau} \approx m_{\tau}^2/m_{\mu}^2 \cdot \Delta a_{\mu} \approx 1.10^{-6}$
 - SuperB sensitivity is in the range of such prediction
- Tau EDM and CPV
 - SuperB sensitive to some few NP model CPV effects
 - tau EDM constrained by electron EDM upper limit to a range inaccessible by SuperB

Tau Lepton Flavour Violation, NP models expectations

constrained MSSM-seesaw and NUHM SUSY expectations from

S. Antusch, E. Arganda, M.J. Herrero, A.M. Texeira, JHEP11(2006)090, arXiv:hep-ph/0607263v2
 E. Arganda, M.J. Herrero, J. Portoles, JHEP06(2008)079, arXiv:0803.2039v3 [hep-ph]
 + several other refs. in 2010 SuperB physics report

► G.Isidori and P.Paradisi in the 2010 SuperB physics report itself

Snowmass Points and Slopes reference points							
SPS	<i>M</i> _{1/2} (GeV)	<i>M</i> ₀ (GeV)	A ₀ (GeV)	$tan\beta$	μ		
1a	250	100	-100	10	> 0		
1 b	400	200	0	30	> 0		
2	300	1450	0	10	> 0		
3	400	90	0	10	> 0		
4	300	400	0	50	> 0		
5	300	150	-1000	5	> 0		

CMSSM BF($\tau \rightarrow e\gamma$)

Tau LFV, CMSSM expectations

CMSSM BF($\tau \rightarrow \mu \gamma$) vs. BF($\mu \rightarrow e \gamma$)

Tau LFV, NUHM SUSY expectations

NUHM BF($\tau \rightarrow 3\mu$)

other info in arXiv:0812.2692v1 [hep-ph] for right plot

11th International Workshop on Tau Lepton Physics, Manchester, UK, 13-17 September 2010

Tau LFV, CMSSM expectations summary

CMSSM expectations for some SPS reference points						
SPS	1a	1 b	2	3	4	5
$BF(au o \mu \gamma) imes 10^{-9}$	4.2	7.9	0.18	0.26	97	0.019
$BF(au o 3\mu) imes 10^{-12}$	9.4	18	0.41	0.59	220	0.043
(maximum values using m_{N_i} and m_{ν_1} in JHEP11(2006)090)						

Tau LFV, Little Higgs expectations

Little Higgs with T parity (LHT), e.g. Eur.Phys.J.C57:13-182,2008, arXiv:0801.1826 [hep-ph]

• can have $BF(\tau \rightarrow 3\mu) > BF(\tau \rightarrow \mu\gamma)$ up to the present experimental limits

• typically expect $\tau \to 3\ell$ comparable to $\tau \to \ell gamma$

SuperB sensitivity to Tau LFV

- repeating BABAR analysis insures an improvement of $\sqrt{\mathcal{L}_{SuperB}/\mathcal{L}_{BABAR}} \approx \sqrt{150} \approx 12$
- if n. of expected background events ~1 events, improvement of $\mathcal{L}_{\text{SuperB}}/\mathcal{L}_{\text{BABAR}} \approx 150$
- sensitivity increases with detector resolution, hermeticity
- sensitivity decreases with beam backgrounds (only moderate worsening is expected)
- recent BABAR papers results extrapolated to SuperB
 - ► $\tau \rightarrow \mu$, $e\gamma$ LFV, Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2 [hep-ex]
 - ► $\tau \rightarrow 3\ell$ LFV, PhysRevD.81.111101(2010), arXiv:1002.4550v1 [hep-ex]

SuperB sensitivity to $\tau \rightarrow \mu \gamma, \tau \rightarrow e \gamma LFV$

- start from BABAR 2010, Phys.Rev.Lett.104:021802,2010, arXiv:0908.2381v2 [hep-ex]
- ♦ use BABAR efficiency, scale expected background with ratio of luminosity
 - ▶ i.e. analysis not re-optimized for SuperB
- assume 35% reduction of signal region from smaller beam-spot, better vertex detector (better resolution is planned to compensate smaller boost)
- ♦ assume 20% efficiency increase for photons from better hermeticity, DIRC redesign
- approximate frequentistic upper limits, only Poissonian BKG uncertainty
- at least 5 observed events for evidence

process	efficiency	expected background	expected 90% CL upper limit	3σ evidence reach
$BF(au o \mu \gamma)$	7.3%	335	2.4·10 ⁻⁹	5.4·10 ⁻⁹
$BF(\tau \to e \gamma)$	3.9%	149	3.0·10 ⁻⁹	6.8·10 ⁻⁹

SuperB sensitivity to $\tau \rightarrow 3\ell$ LFV

- start from BABAR 2010, PhysRevD.81.11101(2010), arXiv:1002.4550v1 [hep-ex]
- selection requirements re-optimized for best upper limit at SuperB
 - fair simulation of background through lepton mis-id
 - only very approximate simulation of BKG from true leptons or Bhabha/dimuon events
- no detector improvement has been assumed
- approximate frequentistic upper limits, only Poissonian BKG uncertainty
- at least 5 observed events for evidence
- SuperB sensitivity improvement ~150

11th International Workshop on Tau Lepton Physics, Manchester, UK, 13-17 September 2010

11

Summary of SuperB LFV reach

Process	Expected 90% CL upper limit	3σ evidence reach		
$BF(\tau \to \mu \gamma)$	2.4·10 ⁻⁹	5.4·10 ⁻⁹		
$BF(\tau \to e \gamma)$	3.0·10 ⁻⁹	6.8·10 ^{−9}		
$BF(\tau \to \ell \ell \ell)$	$2.3 - 8.2 \cdot 10^{-10}$	$1.2 - 4.0 \cdot 10^{-9}$		

11th International Workshop on Tau Lepton Physics, Manchester, UK, 13-17 September 2010

SuperB beam polarization effects on $\tau \rightarrow \mu \gamma$ LFV search

A.Lusiani (INFN & SNS, Pisa)

Tau physics at SuperB

SuperB beam polarization effects on $\tau \rightarrow 3\ell$ LFV search

11th International Workshop on Tau Lepton Physics, Manchester, UK, 13-17 September 2010

14

Tau *g*–2 at Super*B* with beam polarization

• MSSM would shift muon g-2 by about the presently observed discrepancy $\Delta a_{\mu} \approx 3 \cdot 10^{-9}$

Δa_{μ} and $\Delta a_{ au}$ for various SPS points						
SPS	1a	1 b	2	3	4	5
$\Delta a_{\mu} imes 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1
$\Delta a_{\tau} imes 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3
(specific parameters can produce Δa_{τ} as high as 1.10 ⁻⁵)						

- ♦ J.Bernabeu et al., JHEP098P1108 estimate SuperB $\sigma(a_{\tau}) = [0.75 1.7] \cdot 10^{-6}$
 - ► SuperB actually measures $a_{\tau}(q^2)$ from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - however, Δa_{τ} from high energy NP contributions is constant for small q^2
 - real part from τ polar angle distribution or transv.&long. polarization

from tau EDM studies (see next slides) with more realistic assumptions \rightarrow SuperB $\sigma(a_{\tau}) \sim 2.4 \cdot 10^{-6}$

Tau EDM at SuperB, NP expectations

- ♦ $|d_e| < 1.6 \cdot 10^{-27} e \text{ cm}$ at 90% CL, 10.1103/PhysRevLett.88.071805 / PDG10
- most most NP models expect $|d_{\tau}| \propto (m_{\tau}/m_e)|d_e|$
- ♦ SuperB 2010 Physic Report reviews NP models expectations and concludes that: $|d_e|$ upper limit → $|d_\tau^{NP}| < 10^{-22} e \text{ cm}$
- SuperB actually measures $d_{\tau}(q^2)$ form factor from final state distributions of $e^+e^- \rightarrow \tau^+\tau^-$
 - ▶ however, high energy NP contributions are constant for small q^2

SuperB sensitivity to tau EDM, with beam polarization

beam polarization permits measurements based on single tau distributions
 J.Bernabeu et al., arXiv:0707.1658v1 [hep-ph], estimate SuperB σ(d_τ) ≈ 7.2·10⁻²⁰ e cm
 100% electron beam polarization, no uncertainty
 only τ → πν, τ → ρν, no reconstruction uncertainty
 with some additional realistic assuptions
 electron beam with a linear polarization of 80% ± 1%.
 80% geometric acceptance
 track reconstruction efficiency 97.5% ± 0.1%
 SuperB σ(d_τ) ≈ 10·10⁻²⁰ e cm. (integrated angular asymmetry ≈ 3·10⁻⁵)
 note that information can be obtained also from the other decay channels

SuperB sensitivity to tau EDM from previous published results

Belle EDM search, Phys. Lett. B551, 16 (2003), hep-ex/0210066

- ▶ 29.5 fb⁻¹ data sample
- experimental resolution on real & imaginary d_{τ} is **0.9–1.7·10^{–17} e cm**

• at SuperB with 75 ab⁻¹: SuperB $\sigma(d_{\tau}) \approx 17 - 34 \cdot 10^{-20} e \text{ cm}$ (both real and imaginary parts)

• assume also systematics scale with $1/\sqrt{\mathcal{L}}$, not unrealistic for asymmetry measurement

Tau CPV at SuperB, expectations

- SM predictions in general very small ($\tau^{\pm} \rightarrow K^{\pm}\pi^{0}\nu \ CP$ asymmetry $O(10^{-12})$, D. Delepine et al., PRD 72, 033009 (2005), hep-ph/0503090)
- ♦ small SM *CP* asymmetry in τ^{\pm} → $K_S \pi^{\pm} \nu$ from *CPV* in $K^0 \overline{K}^0$ 3.3·10⁻³ ± 2% relative, I.I.Bigi & A. I. Sanda, PLB 625, 47 (2005), hep-ph/0506037
- most NP models do not induce measurable tau CPV
- ♦ R-parity violating SUSY → CPV related asymmetries up to 10%, saturating existing limits
 - sizable asymmetries in $\tau \to K \pi v_{\tau}, \tau \to K \eta^{(\prime)} v_{\tau}$, and $\tau \to K \pi \pi v_{\tau}$

SuperB sensitivity to tau CPV

• CLEO, PRL 88, 111803 (2002), hep-ex/0111095, 13.3 fb⁻¹, $\tau \to K_s \pi v$

→ optimal asymmetry observable $\langle \xi \rangle = (-2.0 \pm 1.8) \cdot 10^{-3}$

• data calibration with $\tau \rightarrow \pi \pi \pi v$

• extrapolating at SuperB, $\sigma_{\langle \xi \rangle} \approx 2.4 \cdot 10^{-5}$

- assume also systematics scale with $1/\sqrt{\mathcal{L}}$
- will update the extrapolation using Belle analysis presented at Tau10
- beam polarization can provide extra equivalent luminosity (to be studied)

Summary

SuperB physics studies focused on NP searches

tau LFV

- SuperB is sensitive to mainstream NP models effects
- complementary to MEG and LHC
- ♦ tau g-2: SuperB sensitivity close to SUSY expectations to explain present muon discrepancy
- **tau EDM**: SuperB sensitivity insufficient, strong constraint from electron EDM upper limit
- tau CPV: a few NP models predict measurable asymmetries
- beam polarization
 - can provide additional information on NP interaction structure
 - increases statistical power of NP searches
- recent preprint 2010 SuperB Physics Report, arXiv:1008.1541v1 [hep-ex]