Neutrino Oscillations Overview

> William J. Marciano Tau 2010 Manchester, England September 17, 2010



# **OUTLINE**

- 1. <u>Neutrino Masses and Mixing</u>
- 2. Leptogenesis: Matter-Antimatter Asymmetry
- 3. Leptonic CP Violation

i) F.O.M. Insensitivity to  $\theta_{13}$  & L (Osc. Length)

 ii) Requirements~300kton H<sub>2</sub>O, 1-2MW protons, Neutrino Wide Band Beam (WBB) E<sub>v</sub>≈0.5-5GeV

- 4. "New Physics" search via  $v_{\mu} \& \overline{v}_{\mu}$  disappearance
- 5. <u>Outlook</u>

#### **1. Neutrino Masses and Mixing**

- 1969-90s <u>Ray Davis</u> Measures Solar v<sub>e</sub> Flux at Homestake Deep Underground Mine ~1/3 Expected! Gallex, Sage, SuperK, <u>SNO</u>, <u>Kamland</u> (Reactor) <u>Interpretation</u>: solar v<sub>e</sub>→1/3 v<sub>e</sub>+1/3v<sub>μ</sub>+1/3v<sub>τ</sub> (roughly)
- 1980s IMB, Kamioka, measure atm. ν<sub>μ</sub> flux, less than expected (Also observe supernova 1987a neutrinos!)
   <u>SuperK</u>; K2K, <u>MINOS</u> (Accelerators)
   <u>Interpretation</u>: atm. ν<sub>μ</sub>→1/2ν<sub>μ</sub>+1/2ν<sub>τ</sub>(near maximal!)

Neutrino Oscillations Established →Neutrino Masses & Mixing Measured (<u>Great Progress!</u>)

#### **<u>3 Generation Mixing Formalism & Status</u>**

$$\begin{pmatrix} |\nu_e \rangle \\ |\nu_{\mu} \rangle \\ |\nu_{\tau} \rangle \end{pmatrix} = U \begin{pmatrix} |\nu_1 \rangle \\ |\nu_2 \rangle \\ |\nu_3 \rangle \end{pmatrix}$$
(1)

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$c_{ij} = \cos\theta_{ij} \quad , \quad s_{ij} = \sin\theta_{ij}$$

$$J_{CP} \equiv \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{13}\sin 2\theta_{23}\cos\theta_{13}\sin\delta. \qquad (2)$$

### **Current Neutrino Mass & Mixing Parameters**

- $\Delta m_{32}^2 = m_3^2 m_2^2 = \pm 2.4(1) \times 10^{-3} \text{ eV}^2$  (atmospheric)
- $\Delta m_{21}^2 = m_2^2 m_1^2 = +7.6(2) \times 10^{-5} \text{ eV}^2$  (solar) (Very precise Minos & KamLAND Measurements)  $|\Delta m_{21}^2 / \Delta m_{32}^2 \approx 1/30| \rightarrow \text{CP Violation Exp Doable!}$ Hierarchy  $m_3 > m_1 \& m_2$ (normal) or  $m_3 < m_1 \& m_2$ (inverted)?

## Large Mixing!

- $θ_{23} \sim 45^{\circ} \quad sin^{2}2θ_{23} = 1.0 \quad (θ_{23} \text{ or } 90^{\circ} θ_{23}) \text{ (atm.)}$   $θ_{12} \sim 34^{\circ} \quad sin^{2}2θ_{12} = 0.87(3) \text{ (solar)}$
- $\theta_{13} \le 11^\circ$  sin<sup>2</sup>2 $\theta_{13} \le 0.15$  (How Small?)  $0 \le \delta \le 360^\circ$ ?

J<sub>CP</sub>≅0.11sin2θ<sub>13</sub>sinδ (potentially large!)

#### What do we still need to learn?

- 1. Value of  $\theta_{13}$ ? (Reactors:  $\sin^2 2\theta_{13} \rightarrow 0.01$ ) (Long Baseline  $v_{\mu} \rightarrow v_e$  similar)
- 2. Sgn  $\Delta m_{32}^2$ ? (Important for Neutrinoless  $\beta\beta$  Decay)
- 3. Value of δ?, J<sub>CP</sub>?, <u>CP Violation? (Holy Grail)</u>
- 4. Precision  $\Delta m_{32}^2$ ,  $\Delta m_{21}^2$ ,  $\theta_{23}$ ,  $\theta_{12}$  (better than 1%!)
- 5. <u>"New Physics"</u> Sterile v, <u>Very Weak</u> Long Distance Physics (*The Dark World*)...

2. Leptogenesis: Matter-Antimatter Asymmetry

- More baryons than antibaryons in our Universe
- Leptogenesis Scenario:
  - <u>Heavy Majorana Neutrinos Created and Decay</u>
     N→H<sup>-</sup>e<sup>+</sup>, H<sup>0</sup>√ (<u>L & CP VIOLATION</u>)

Leads to antilepton (excess)-lepton Asymmetry

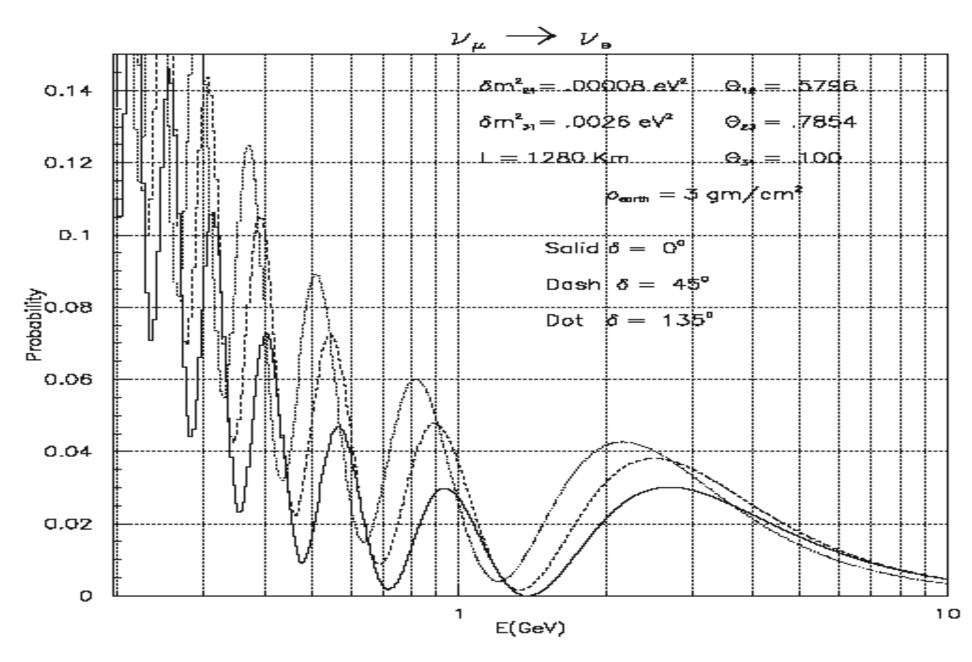
 <u>Electroweak Phase Transition (250GeV) (Baryogenesis)</u>
 't Hooft Mechanism B-L Conserved (B&L Violated) antilepton excess → baryon (quark) excess by 1 in 10<sup>9</sup>

Is L Violated in Nature? (<u>Neutrinoless ββ Decay</u>) Is there Leptonic CP Violation? (<u>v oscillations</u>) Indirect evidence for Leptogenesis (Best we can do.)

#### 3. Leptonic CP Violation

$$\begin{aligned} P(\nu_{\mu} \rightarrow \nu_{e}) &= P_{I}(\nu_{\mu} \rightarrow \nu_{e}) + P_{II}(\nu_{\mu} \rightarrow \nu_{e}) + P_{III}(\nu_{\mu} \rightarrow \nu_{e}) \\ + \text{ matter } + \text{ smaller terms} \end{aligned}$$

$$\mathbf{P}_{I}(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right)$$


$$\begin{aligned} \mathbf{P}_{II}(\nu_{\mu} \to \nu_{e}) &= \frac{1}{2} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \theta_{13} \\ \sin \left(\frac{\Delta m_{21}^{2}L}{2E_{\nu}}\right) \times \left[\sin \delta \sin^{2} \left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right) \\ &+ \cos \delta \sin \left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right) \cos \left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right) \right] \end{aligned}$$

$$\mathbf{P}_{III}(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta_{12} \cos^{2} \theta_{13} \cos^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{21}^{2}L}{4E_{\nu}}\right)$$

For antineutrinos,  $\delta \rightarrow -\delta$  and opposite matter effect.

#### Zohreh Parsa, BNL

#### **FNAL**



# **<u>CP Violation Asymmetry</u>**

$$A_{CP} \equiv \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}$$
(3)

To leading order in  $\Delta m_{21}^2$  (sin<sup>2</sup> 2 $\theta_{13}$  is not too small):

$$A_{CP} \simeq \frac{\cos \theta_{23} \sin 2\theta_{12} \sin \delta}{\sin \theta_{23} \sin \theta_{13}} \left( \frac{\Delta m_{21}^2 L}{4E_{\nu}} \right) + \text{matter effects}$$
(4)

$$F.O.M. = \left(\frac{\delta A_{CP}}{A_{CP}}\right)^{-2} = \frac{A_{CP}^2 N}{1 - A_{CP}^2} \tag{5}$$

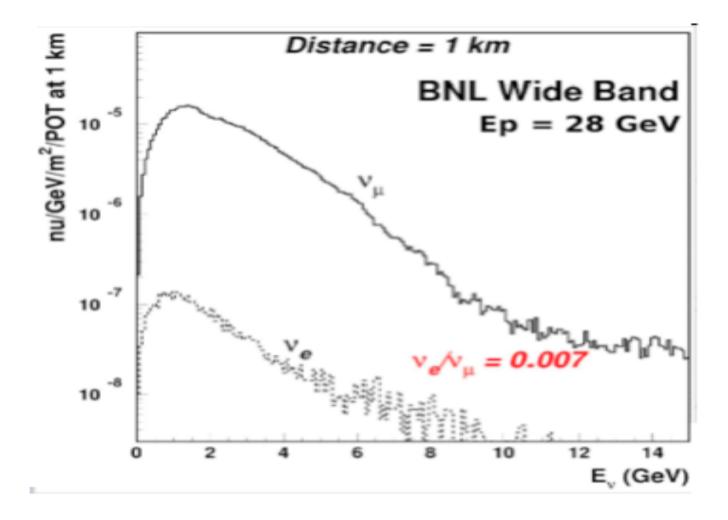
N is the total number of  $\nu_{\mu} \rightarrow \nu_{e} + \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  events. Since N falls (roughly) as  $\sin^{2}\theta_{13}$  and  $A_{CP}^{2} \sim 1/\sin^{2}\theta_{13}$ , to a first approximation the F.O.M. is independent of  $\sin\theta_{13}$ . Similarly, given  $E_{\nu}$  the neutrino flux and consequently N falls as  $1/L^{2}$  but that is canceled by  $L^{2}$  in  $A_{CP}^{2}$ .

## i) CP Violation Insensitivities

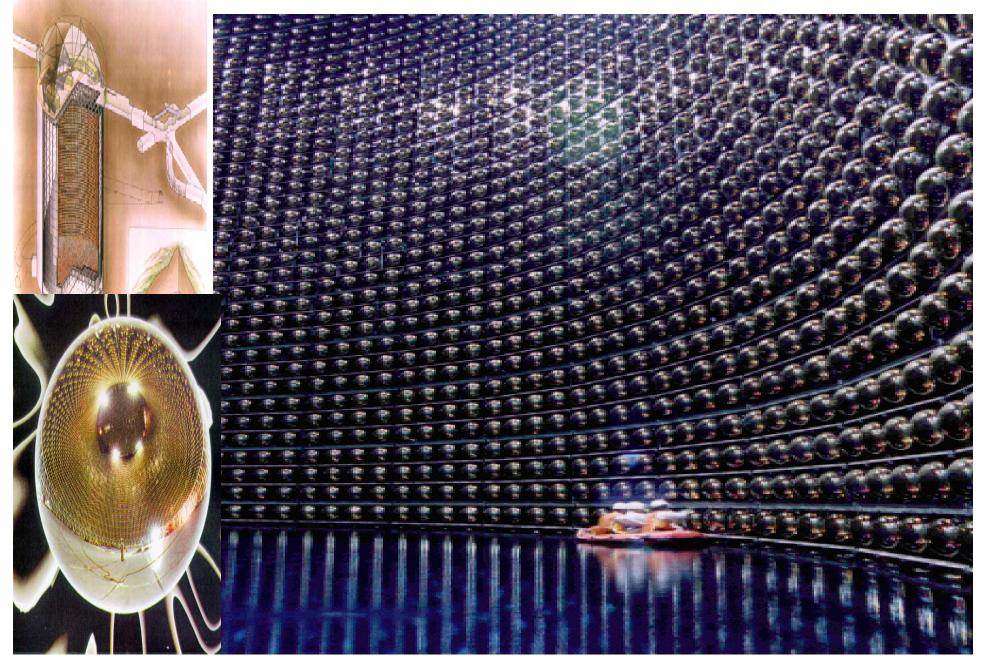
• To a very good approx., our statistical ability to determine  $\delta$  or  $A_{cp}$  is <u>independent</u> of sin<sup>2</sup>2 $\theta_{13}$  (down to ~ 0.003) and the detector distance L (for long distance).

## ii) CP Violation Requirements

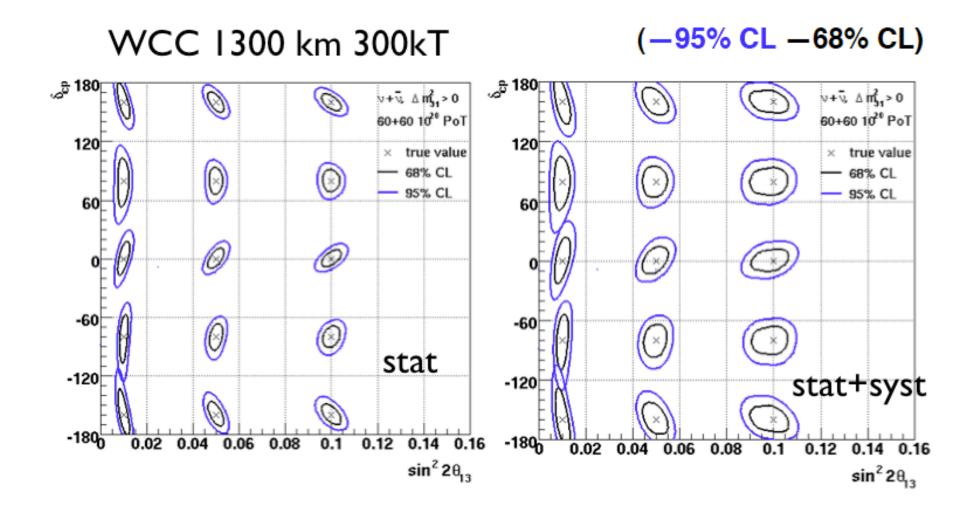
- Pick any reasonable  $\theta_{13}$  (eg sin<sup>2</sup>2 $\theta_{13}$ =0.04)
- What does it take to measure  $\delta$  to  $\pm 15^\circ$  in about  $5x10^7$  sec?


Answer (Approx.): <u>300kton Water Cerenkov Detector</u>

Approx 20% Acceptance, 50 kton LArgon 90% Acceptance or Hybrid combination


+ Traditional Horn Focused v WBB powered by

<u>1-2MW proton accelerator</u> (egs. Project X at FNAL)


## Horn Focused Neutrino Beam



## **SUPER KAMIOKANDE**



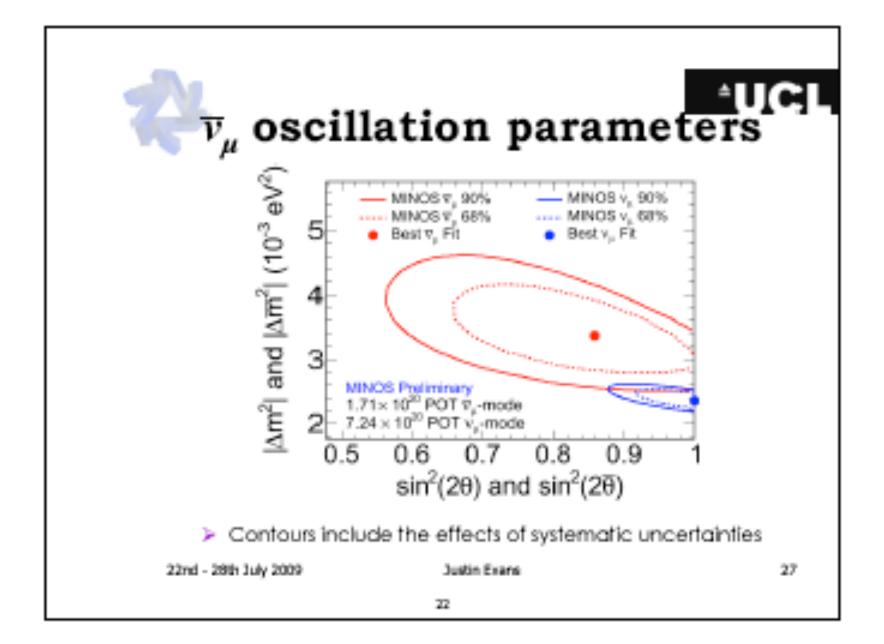
#### **CP** Phase Insensitivity to $\theta_{13}$ Value



#### 4. "New Physics" search via $v_u \& \overline{v_u}$ disappearance

Disappearance at MINOS  $v_{\mu} \rightarrow v_{\mu} \& \overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$  show differences?  $P(v_{\mu} \rightarrow v_{\mu})=1-\sin^{2}2\theta_{32}\sin^{2}(\Delta m_{32}^{2}L/4E_{v})$ 

 $v_{\mu} \rightarrow v_{\mu}$ : Δm<sup>2</sup><sub>32</sub>=2.35(11)x10<sup>-3</sup>eV<sup>2</sup> sin<sup>2</sup>2θ<sub>32</sub>~1 (>0.91)  $\overline{v}_{\mu} \rightarrow \overline{v}_{\mu}$ : Δm<sup>2</sup><sub>32</sub>=3.36(45)x10<sup>-3</sup>eV<sup>2</sup>, sin<sup>2</sup>2θ<sub>32</sub>=0.86(11)


#### 2 or difference? 30%?

(Collaboration does not claim discrepancy!)

But good motivation to examine "<u>New Physics</u>" effects in neutrino oscillation experiments, since in the future one might expect better

than 1% measurements!

**Anticipate Surprises!** 



## $\nu_{\mu}$ Disappearance

#### Neutrino Running

- Total exposure: 2500 kT.MW. $(10^7)$ .sec
- 195000 CC evts/6yrs: 2MW-FNAL, 100kT-HS
- Use only clean single muon events.

#### Measurements

- 1% determination of  $\Delta m^2_{32}$
- 1% determination of  $\sin^2 2\theta_{23}$
- Most likely systematics limited.

#### $\bar{\nu}$ running

- Need twice the exposure for similar size data set.
- very precise CPT test possible.

Very easy to get this effect Does not need extensive pattern recognition. Can enhance the secon minimum by background subtracti

#### $v_{\mu}$ disappearance Events/bin 000 FNAL to Homestake 1290 km $\sin^2 2\theta_{23} = 1.0$ $\Delta m^2_{32} = 2.5e-3 eV^2$ 2500 kT MW (10<sup>7</sup>) sec 800 No oscillations: 51500 ev 600 With oscillations: 20305 400 2000 2 3 Reconstructed v<sub>u</sub> Energy (Ge

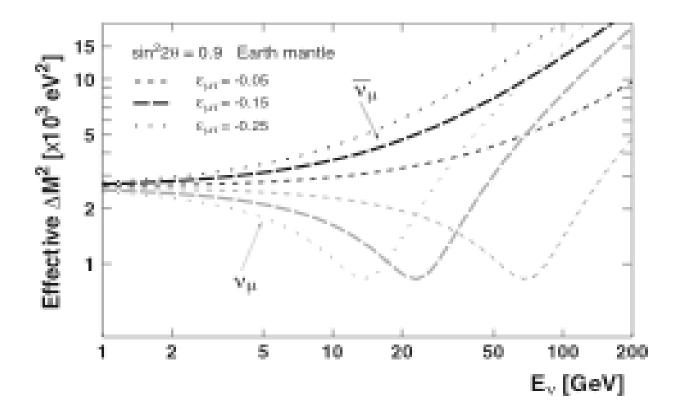
 $\Delta m_{32}^2$  and  $\sin^2 2\theta_{32}$  can be measured in long baselines as functions of E<sub>v</sub> (also obtained from atmospheric v).

$$v_{\mu} \rightarrow v_{\mu} \& \bar{v_{\mu}} \rightarrow \bar{v_{\mu}} Comparison$$

Usually phrased as a test of CPT (true in vacuum)

Apparent CPT violation  $\rightarrow$  "New Physics" in v interactions (in matter)  $\epsilon \sqrt{2}G_{F}\overline{\nu}\gamma_{\mu}\nu'\overline{f}\gamma^{\mu}f$ , f=e, u, d Potential changes sign  $v_{\mu}\rightarrow\overline{v}_{\mu}$ Sterile Neutrinos? etc "General bounds on non-standard neutrino interactions" by Biggio, Blennow and Fernandez-Martinez (2009) Using solar and atmosheric oscillation data in  $v_e v_u v_\tau$  space

 $v_e$  $v_{\mu}$  $v_{\tau}$ From Solar2.50.211.7 $v_e$ and Atmospheric $|\epsilon| < 0.21$ 0.0460.21 $v_{\mu}$ 1.70.219.0 $v_{\tau}$ 


(Bounds being updated-Take with a grain of salt)

ε represents the size of the "New Physics" potential relative to MSW potential (Weak Strength  $\sqrt{2}G_F \overline{\nu}_e \gamma_\mu \nu_e \overline{e} \gamma^\mu e$ )

## <u>Some Interesting Recent *ε*≠0 Examples</u>

Engelhardt, Nelson and Walsh: sterile neutrinos & gauge B-L new long distance physics weakly coupled <u>Heeck and Rodejohann</u>: gauge  $L_{\mu}$ - $L_{\tau}$  (violate e- $\mu$ - $\tau$  universality) <u>very</u> long range interaction,  $m_v < 10^{-18} eV!$ Earlier: <u>Joshipura & Mohanty</u> Gauged L<sub>e</sub>-L<sub>u</sub>, L<sub>e</sub>-L<sub>t</sub>, L<sub>u</sub>-L<sub>t</sub> *Fifth Force:* α'≈10<sup>-52</sup>! <u>Mann et al.</u>: New  $v_{\mu} \rightarrow v_{\tau}$  Interaction  $\varepsilon_{\mu\tau} \sim -0.1$  (see figure, some generic features) Either O( $\alpha/\Lambda^2$ )  $\Lambda$  large or O( $\alpha'/m^2$ )  $\underline{\alpha' and m small}$  (long distance) Effective potential changes sign for  $v_{\mu} \rightarrow \overline{v}_{\mu}$ All lead to different  $v_{\mu}$  and  $\overline{v}_{\mu}$  oscillations (in matter) E, Dependence of Oscillation Parameters

# From Mann, Cherdack, Musial and Kafka (Example)



$$\nu_{\mu} \rightarrow \nu_{\mu}$$
 and  $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$  disappearance

• 
$$id/dt |v_{\mu}(t)| = |\Delta m_{32}^2 s^2/2p_{\nu} \Delta m_{32}^2 sc/2p_{\nu} ||v_{\mu}(t)|$$
  
 $|v_{\tau}(t)| |\Delta m_{32}^2 sc/2p_{\nu} \Delta m_{32}^2 c^2/2p_{\nu} - p_{\nu}(n_{\nu\tau} - n_{\nu\mu})||v_{\tau}(t)|$   
 $s = sin\theta_{V} c = cos\theta_{V}$ 

Could also be off diagonal matter effects, eg Mann et al

$$\begin{split} L_{v} = 2(2p_{v}/\Delta m_{32}^{2}) &\sim 1000(E_{v}/1 \text{GeV}) \text{km} \\ L_{0} = 2\pi/p_{v}(n_{v\tau} - n_{v\mu}) &\sim 5000/\epsilon \text{km} \quad \text{Refraction index length} \\ y = L_{v}/L_{0} &\sim E_{v}\epsilon/5 \text{GeV} \quad (\text{Big Effects For } y \sim O(1)) \\ P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^{2}2\theta_{m} \sin^{2}(\pi x/L_{m}) \text{ disappearance} \end{split}$$

<u>(Suggests studies at high energies & long distances)</u> E<sub>ν</sub>>5GeV/ε Atmospheric & Very Long Baseline

 $\sim$ 

 $\Delta m_{32}^2 \sin 2\theta_V$ 

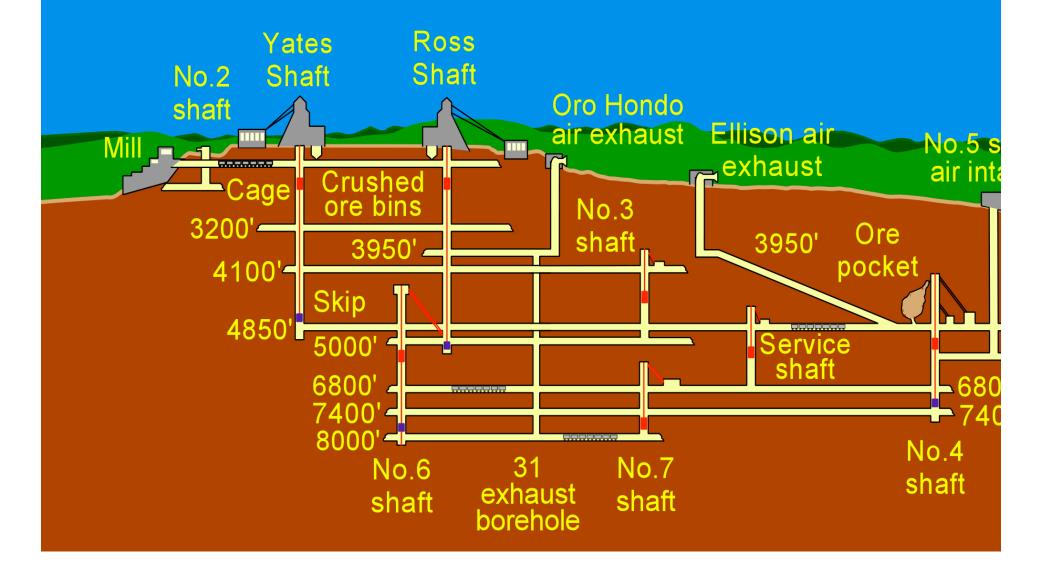
No resonance for maximal vacuum mixing  $\theta_V = 45^\circ$  (our world) No  $\Delta m_{32}^2$  difference in  $v_{\mu}$  vs  $\overline{v}_{\mu}$  for  $\theta_V$ =45° (but depends on E<sub>v</sub>) Note high E<sub>v</sub> more sensitive to matter!

Anticipate possible differences in  $v_{\mu}$  and  $\overline{v}_{\mu}$  effective energy dependent mixing angles and  $\Delta m^2_{32}$  in matter

Future experiments will measure those parameters with very high precision! Atmospheric as well as Long Baseline  $v_{\mu}$  and  $\overline{v}_{\mu}$  disappearance will be very powerful probes of non standard (long and short distance) neutrino interactions!

Note,  $v_{\mu} \rightarrow v_{\tau}$  and  $\overline{v_{\mu}} \rightarrow \overline{v_{\tau}}$  appearance potentially very interesting

<u>Moral</u>: Neutrino  $v_{\mu}$  and  $\overline{v}_{\mu}$  Osc in Matter provides a potentially powerful probe of (weakly coupled) <u>light</u> and heavy "New Physics". Particularly light  $\varepsilon \sim \alpha'/G_F m^2$ 


(Does not depend sensitively on  $sin^2 2\theta_{13}$  value!)

# 5. Outlook

- <u>Neutrino exps will advance</u>: θ<sub>13</sub> Mass Hierarchy, v<u>CP Violation</u>
   ... via LBNE <u>Requires Big Detector</u>: 300kton H<sub>2</sub>O or equivalent
   2MW Accelerator wide band neutrino beam
- <u>Also</u>
- Atmospheric & Solar v
- 100,000 supernova v events (if in our galaxy)!
- Observe relic supernova v (universe history)!
- "New Physics": sterile v, extra dim. dark energy...
- <u>Proton decay</u>, n-n osc.,...magnetic monopoles

#### The potential for major discoveries & surprises is great!

# General Homestake Mine Development





# Fermilab Activities

• What does Fermilab do after the LHC starts?

 (Great Hope - ILC e<sup>+</sup>e<sup>-</sup> Collider (μ+μ- Collider?)) In the meantime? <u>New Working Group Report</u> <u>Project X Option</u>- 2MW 8GeV proton linac (ILC R&D) 8GeV fixed target program (eg. μN→eN…)
 Main Injector 30-120GeV (also at 2MW)
 2MW at 50GeV provides nice neutrino beam for FNAL-Homestake (Cost ?) Total Project ≈\$1-2 Billion <u>Doable!</u> <u>Must Do!</u> (START AS SOON AS POSSIBLE!)