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Overview

What is the structure of soft gluon corrections in multiparton
scattering?

◮ Overview of soft gluon resummation - webs.

◮ Path integral methods and the replica trick.

◮ Webs in multiparton scattering - mixing matrices.

◮ Applications and outlook.
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Soft gluon radiation

◮ If ξ is the energy carried by gluons, typically get cross-sections:

dσ

dξ
=

∑

n,m

αn

[

c0
nm

logm(ξ)

ξ
+ c1

nm logm(ξ) + . . .

]

◮ First set of terms corresponds to eikonal approximation, in
which momenta ki → 0 for all (soft) emissions. Well
understood.

◮ Second set of terms is next-to-eikonal (NE) limit i.e. first
order in ki .

◮ Perturbation theory breaks down ⇒ need resummation.

3 / 28



Resummation of soft gluon logs

◮ Resummation of eikonal logs is well-known.

◮ Many different methods exists e.g. factorisation theorems
(soft anomalous dimensions), SCET.

◮ I will summarise the web approach (Gatheral, Frenkel, Taylor,
Sterman).

◮ First, note that in the eikonal approximation, the Feynman
rules for gluon emission simplify.

p

k

∼
pµ

p · k

independently of the spin of
the emitting particle!
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Soft resummation - abelian case
◮ With these Feynman rules, only certain diagrams contribute.
◮ Can classify them at all orders in perturbation theory.
◮ In abelian theories, get a simple result (Yennie et. al.)

A = A0 exp
[

∑

Gc

]

,

where A0 is the Born amplitude, and Gc are connected
subdiagrams.

◮ Gives eikonal logarithms at all orders in α.
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Soft resummation - nonabelian case
◮ Exponentiation generalisable to non-abelian theories, but

structure is more complicated:

A = A0 exp
[

∑

C̄W W
]

,

where W are webs (two-eikonal line irreducible subdiagrams).
◮ Webs have modified colour weights C̄W .

◮ More effort than abelian case, but still predicts eikonal logs to
all orders.

◮ Only set up for two coloured particles...
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Soft resummation - open problems

◮ Although some things are known about multileg processes, we
would like to know more:

What is the structure of webs for multiparton processes?

(Gardi, Laenen, Stavenga, White; Mitov, Sterman, Sung)

◮ Another problem is what happens beyond the eikonal
approximation (Grunberg et. al., Laenen et. al., Vogt et. al.).

Can we systematically classify next-to-eikonal logarithms?

◮ There has recently been progress on both these fronts.

◮ Here we focus on the first...
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Motivation

◮ Q: “We already know how to resum some large logs in
multiparton processes, so why do it using webs?”

◮ A: There are a number of motivations!

1. Webs allow you to calculate the exponent of the soft gluon
amplitude directly, thus makes extending resummation
methods much easier.

2. Webs contain more information than in other resummation
approaches i.e. some finite terms also exponentiate, not just
divergent logs.

3. Webs allow us to classify soft gluon corrections beyond the
eikonal approximation.

4. Also more formal applications (e.g. sum over dipoles
conjecture, N = 4 SYM).

◮ Convenient to use path integral methods...
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Path Integral Method for Soft Gluon Resummation

◮ Basic idea: rewrite a QCD scattering process in terms of path

integrals over the emitting particle trajectories.

◮ Classical trajectories
correspond to eikonal
approximation (gluons
have zero momentum).

◮ Expansion about classical
trajectory gives NE
corrections.

◮ Allows efficient
classification of diagrams
leading to large logs.
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Soft photon field theory
◮ In the path integral approach, one obtains a field theory for

the soft gauge field, which generates subdiagrams in the full
theory.

◮ E.g. for an abelian theory, one finds the soft gluon generating
functional

Z =

∫

DAµ

s e iS[Aµ

s ]
∏

x

exp

[

i

∫

dx · As(x)

]

=

∫

DAµ

s e iS[Aµ

s ]
[

Φ(1) ⊗ Φ(2) ⊗ · · · ⊗ Φ(L)
]

,
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Soft gluon field theory

◮ Things are more complicated due to non-trivial colour
structure.

◮ Soft gluon diagrams are generated by the generating
functional

ZJK =

∫

DAµ

s e iS[Aµ

s ]

{

∏

x

exp

[

i

∫

dx · As(x)

]

}

JK

=

∫

DAµ

s e iS[Aµ

s ]
[

Φ(1) ⊗ Φ(2) ⊗ · · · ⊗ Φ(L)
]

JK
,

where Φ(i) is a Wilson line operator associated with parton i .

◮ J, K are indices in the space of possible colour flows.

11 / 28



Soft gluon field theory

◮ We can use the soft gluon field theory to classify all diagrams
which contribute in the eikonal approximation (and beyond).

◮ In particular, we can show that diagrams exponentiate, as in
the two line case.

◮ The diagrams which sit in the exponent are multiparton webs.

◮ They have interesting properties.

◮ Can prove exponentiation using the replica trick from
statistical physics.
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The replica trick

◮ The generating functional for soft gluon diagrams is

ZJK =

∫

DAµ

s e iS[Aµ

s ]
[

Φ(1) ⊗ Φ(2) ⊗ · · · ⊗ Φ(L)
]

JK
,

◮ The replica trick tells us to consider a theory with N

non-interacting copies of the soft gluons...
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The replica trick

◮ The generating functional for the replicated theory is

ZN
IJ =

∫

DA1
µ

. . .DAN
µ

e i
P

i S[Ai
µ
] [(Φ

(1)
1 Φ

(1)
2 . . . Φ

(1)
N )

⊗ (Φ
(2)
1 . . . Φ

(2)
N ) ⊗ (Φ

(3)
1 . . . Φ

(3)
N ) . . . ⊗ (Φ

(L)
1 . . . Φ

(L)
N )]IJ ,

where Φ
(i)
m is a Wilson line operator on parton line i , with

replica number j .

◮ That is, each parton line has N Wilson line operators on it,
ordered by increasing replica number.

◮ This generates all Feynman diagrams in the replicated theory,
which may contain a single replica, or multiple replicas.
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The replica trick

◮ By a simple mathematical identity

ZN = 1 + N logZ + O(N2).

◮ It follows immediately that

Z = exp

[

∑

W

W

]

,

where W is any diagram which is linear in the number of
replicas N.

◮ I.e. a subclass of soft gluon diagrams exponentiates in
non-abelian theories, for any number of parton legs!

◮ In the replica language, these are the O(N) diagrams.

◮ These are our multiline webs.
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◮ To find which diagrams are O(N), we need to read off the
Feynman rules from the generating functional for the
replicated theory.

◮ This is complicated by the fact that each line carries a
product of Wilson lines

Φ
(i)
1 . . . Φ

(i)
N = P exp

[

igs

∫

dt ni · A
µ

1

]

. . .P exp

[

igs

∫

dt ni · A
µ

N

]

◮ To read off the Feynman rules, need to rewrite this as a single
path-ordered exponential.
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Replica ordering
◮ We can do this by introducing an operator R, which orders

gauge fields in terms of increasing replica number.
◮ Example:

R[Aµ

i Aν

j ] =

{

A
µ

i Aν

j , i < j

A
µ

j Aν

i , i > j

◮ Then we can write the generating functional for the replicated
theory as

ZN =

∫

[

DA1
µ

]

. . .
[

DAN
µ

]

ei
P

i S[Ai
µ
] R

{

P exp

[

igs

N
∑

i=1

∫

dt n1 · A
i

]

⊗ . . . ⊗ P exp

[

igs

N
∑

i=1

∫

dt nL · Ai

]}

.
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Feynman diagrams in the replicated theory

◮ All possible soft gluon subdiagrams are generated in the
theory.

◮ Their colour factors are not the usual colour factors of QCD,
as the replica ordering operator reorders the colour matrices.

◮ In the original theory, the eikonal amplitude thus consists of
an exponential of those diagrams which are O(N) in the
replicated theory, but where the colour factors are modified.

◮ For the two parton case, we find that these are exactly the
webs of Gatheral, Frenkel and Taylor!

◮ For the multiparton case, things are more complicated...
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Webs in multiparton scattering
◮ Consider the following two diagrams:

(a) (b)

i

j j

i

◮ Contribution to the colour factors in the replicated theory are:

(a) (b)

i = j : NC (a) NC (b)
i < j : 1

2N(N − 1)C (b) 1
2N(N − 1)C (b)

i > j : 1
2N(N − 1)C (a) 1

2N(N − 1)C (a)

19 / 28



Web example

◮ Taking the O(N) piece of these, we find that both diagrams
contribute to the exponent of the eikonal scattering
amplitude, with modified colour factors
C̃ (a) = 1

2 [C (a) − C (b)], C̃ (b) = 1
2 [C (b) − C (a)].

◮ If F(a) is the kinematic part of diagram a etc., the total
contribution to the exponent from these diagrams can be
written

(

F(a)
F(b)

)T (

C̃ (a)

C̃ (b)

)

=

(

F(a)
F(b)

)T
1

2

(

1 −1
1 −1

)(

C (a)
C (b)

)

.

◮ This structure is found to be quite general at higher loop
order.
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Webs in multiparton scattering

◮ In general, one finds closed sets of diagrams, related by
permutations of gluons on the parton lines.

◮ The contribution of each set to the exponent of the eikonal
scattering amplitude is

∑

D,D′

FDRDD′CD′ ,

where RDD′ is a web-mixing matrix.

◮ The study of webs in multiparton scattering is equivalent to
the study of these matrices!

◮ They have interesting properties...

21 / 28



Web mixing matrices

◮ We observe the following interesting properties:

1. Rows of web mixing matrices sum to zero i.e.

∑

D′

RDD′ = 0.

This is related to the fact that symmetric colour combinations
do not exponentiate.

2. The matrices are idempotent i.e. R2 = R . This implies they
have eigenvalues 0 and 1.

◮ These properties are intimately related to the cancellation of
subdivergences in the exponent of the scattering amplitude.
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A four loop example

[[1,2],[3,1],[3,4],[2,4]] [[1,2],[2,3],[4,3],[4,1]] [[1,2],[3,2],[3,4],[4,1]] [[1,2],[2,3],[3,4],[1,4]]

[[1,2],[3,2],[4,3],[1,4]] [[1,2],[1,3],[4,3],[4,2]] [[1,2],[3,2],[3,4],[1,4]] [[1,2],[1,3],[3,4],[4,2]]

[[1,2],[3,1],[4,3],[4,2]] [[1,2],[1,3],[4,3],[2,4]] [[1,2],[1,3],[3,4],[2,4]] [[1,2],[2,3],[4,3],[1,4]]

[[1,2],[3,1],[3,4],[4,2]] [[1,2],[3,2],[4,3],[4,1]] [[1,2],[3,1],[4,3],[2,4]] [[1,2],[2,3],[3,4],[4,1]]
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Four loop mixing matrix (×24)
0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

6 −6 2 2 −2 4 −4 2 −2 −2 −4 4 −4 4 0 0

−6 6 −2 −2 2 −4 4 −2 2 2 4 −4 4 −4 0 0

2 −2 6 −2 2 4 −4 −2 2 −6 4 4 −4 −4 0 0

2 −2 −2 6 2 4 −4 −2 −6 2 −4 −4 4 4 0 0

−2 2 2 2 6 4 −4 −6 −2 −2 4 −4 4 −4 0 0

2 −2 2 2 2 4 −4 −2 −2 −2 0 0 0 0 0 0

−2 2 −2 −2 −2 −4 4 2 2 2 0 0 0 0 0 0

2 −2 −2 −2 −6 −4 4 6 2 2 −4 4 −4 4 0 0

−2 2 2 −6 −2 −4 4 2 6 −2 4 4 −4 −4 0 0

−2 2 −6 2 −2 −4 4 2 −2 6 −4 −4 4 4 0 0

−2 2 2 −2 2 0 0 −2 2 −2 4 0 0 −4 0 0

2 −2 2 −2 −2 0 0 2 2 −2 0 4 −4 0 0 0

−2 2 −2 2 2 0 0 −2 −2 2 0 −4 4 0 0 0

2 −2 −2 2 −2 0 0 2 −2 2 −4 0 0 4 0 0

−18 −6 −6 −6 −18 12 12 −6 −18 −18 12 12 12 12 24 0

−6 −18 −18 −18 −6 12 12 −18 −6 −6 12 12 12 12 0 24

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A
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Summary

◮ Soft gluon corrections exponentiate for any number of parton
legs.

◮ The exponent contains closed sets of diagrams, related by
mixing matrices R .

◮ Each closed set is a “web”, generalising the two-line results.

◮ The properties of the “web mixing matrix” R couple the
colour and kinematic information of each diagram.
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Other results

◮ Closed combinatoric formulae for the mixing matrices.

◮ Can also extend webs to next-to-eikonal order.

◮ For the two line case, agreement is found between the path
integral methods and a traditional diagrammatic analysis
(Laenen, Magnea, Stavenga, White).

◮ Results pave the way for resummation of multiline and / or
NE effects.
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The MSS approach

◮ Mitov, Sterman and Sung have also recently generalised webs
to multiparton scattering.

◮ They obtain a combinatoric generalisation of Gatheral’s
formula, which is equivalent to that obtained from the path
integral approach.

◮ They also consider renormalisation of webs, and find a
non-trivial structure of nested counterterms at higher orders.

◮ This acts, with the mixing matrices R , to cancel all
subdivergences in the exponent of the scattering amplitude.

◮ How this works in practice is under investigation...
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Conclusions

◮ Path integral methods prove highly powerful in analysing soft
gluon physics.

◮ New resummation results are obtained:

1. Classification of multiline webs.
2. Classification of NE logarithms.

◮ New mathematical structures have been found in the
exponents of scattering amplitudes - mixing matrices R .

◮ Results pave the way for resumming multiline / NE effects in
cross-sections (preliminary work in Drell-Yan).

◮ Also more formal applications?
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