Spectroscopic study of 27Al states above the neutron threshold via the 26Mg(3He,d) reaction

Stephen Gillespie
Department of Physics
University of York
Outline

- Motivation
- Experimental Details
- Current Analysis
- Future Work
Motivation

- High $^{26}\text{Mg}/^{24}\text{Mg}$ ratio present in some Ca-Al-rich meteorites suggest ^{26}Al was present during the formation of the solar system.
- Destruction rate is controlled by the $^{26}\text{Al}(n,p)^{26}\text{Mg}$ and $^{26}\text{Al}(n,\alpha)^{23}\text{Na}$ reactions whose rates are uncertain.
- Resonances for these reactions correspond to excited states in ^{27}Al above the neutron threshold.
Previous Work

- 27Al(p,p')27Al inelastic scattering experiment was performed at Orsay using the Enge Split-Pole magnetic spectrometer.
- Observed 30 new states above the neutron threshold.
- Unable to extract any other spectroscopic information.

Experimental Details

- States were populated using the $^{26}\text{Mg}(^{3}\text{He},d)^{27}\text{Al}$ transfer reaction.
- Experiment was performed at the MLL facility in Munich using the Q3D magnetic spectrometer.
- Used an enriched 20\(\mu\)g/cm\(^2\) ^{26}MgO target.
- Stripped cathode determines position to higher resolution than strip width.

Data was taken at 5 angles to measure differential cross section \(dW/d\Omega \).

Angle of scattered incident particle depends upon \(l \) transferred to target.

Experimental data compared to DWBA calculations to assign spin parity states.

Optical potentials used in DWBA calculated from elastic scattering data.

DWBA Fit $^{22}\text{Ne}(^{3}\text{He},d)^{23}\text{Na}$

Top - 10 Degree Focal Plane Spectrum, insert PID plot showing deuterons
Bottom – 10 Degree Focal Plane Spectrum deuteron gated
Top - 10 Degree Focal Plane Spectrum deuteron gated
Bottom – 20 Degree Focal Plane Spectrum deuteron gated
Top - 10 Degree Focal Plane Spectrum, insert PID plot showing protons
Bottom – 10 Degree Focal Plane Spectrum proton gated, insert $^{12}\text{C}(^{3}\text{He},p)^{14}\text{N}$ States
D. Visser nukesim-classes http://nukesim-classes.sourceforge.net/index.html
10 Degree Focal Plane Spectrum deuteron gated

\[^{16}\text{O}(^{3}\text{He},d) \]
\[^{12}\text{C}(^{3}\text{He},d) \]
\[^{24}\text{Mg}(^{3}\text{He},d) \]
Top - 10 Degree Fitted Focal Plane Spectrum
Bottom – Fit Residuals
Proton Spectrum from Previous study, vertical blue lines represent states seen in this work

<table>
<thead>
<tr>
<th>This Work</th>
<th>Previous Study</th>
<th>This Work</th>
<th>Previous Study</th>
<th>This Work</th>
<th>Previous Study</th>
<th>This Work</th>
<th>Previous Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>13030(2)</td>
<td>13037(4)</td>
<td>13146(2)</td>
<td>13151(5)</td>
<td>13370(2)</td>
<td>13365(5)</td>
<td>13512(2)</td>
<td>13551(4)</td>
</tr>
<tr>
<td>13076(2)</td>
<td>13082(4)</td>
<td>13192(2)</td>
<td>13184(5)</td>
<td>13407(2)</td>
<td>13412(4)</td>
<td>13529(2)</td>
<td>13526(4)</td>
</tr>
<tr>
<td>13090(2)</td>
<td>13095(4)</td>
<td>13210(2)</td>
<td>13212(4)</td>
<td>13450(2)</td>
<td>13449(4)</td>
<td>13556(2)</td>
<td>13551(4)</td>
</tr>
<tr>
<td>13111(2)</td>
<td>13106(4)</td>
<td>13333(2)</td>
<td>13338(4)</td>
<td>13478(2)</td>
<td>13478(4)</td>
<td>13579(2)</td>
<td>13579(4)</td>
</tr>
<tr>
<td>13136</td>
<td>-</td>
<td>13357(2)</td>
<td>13354(4)</td>
<td>13497(2)</td>
<td>13491(4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proton Spectrum from Previous study, vertical blue lines represent states seen in this work

Angular Distributions

- Observed 22 States at 3 or more angles
- Cross sections have yet to be calculated

Left – Angular Distribution $E_x = 13.579\text{MeV}$
Right – Angular Distribution $E_x = 13.030\text{MeV}$
DWBA Calculations

- Theoretical angular distributions calculated using FRESCO DWBA code.
- Global optical potentials by Pang \(^{3}\text{He}\) and Daehnick \(^{2}\text{H}\) used in calculations.

Normalised FRESCO DWBA Cross section calculations \(E_x = 13.015\text{MeV}\)
Future Work

- Investigate the effectiveness of background subtraction on peak fitting
- Calculate and compare experimental cross sections to DWBA calculations
- Extract Spin-Parity states for observed levels
Collaborators

University of York - C. J. Barton, A. M. Laird, J. Riley, M. Williams
IPN-Orsay - N. de Séréville, C. Portail, I. Stefan
UPC-Barcelona - A. Parikh
TUM - T. Faestermann
CSNSM - J. Kiener
TUNL - R. Longland
$^{32}\text{S}^{(3}\text{He,d})$ peak fitted with a landau function
Peak Fitting

$^{32}\text{S}(^{3}\text{He,d})$ peak fitted with a landau function

$$\exp \left\{ \frac{-1}{2} \left(\lambda + e^{-\lambda} \right) \right\}$$

$$\lambda = \frac{x - m}{s}$$
10 Degree Fit
10 Degree Fit
10 Degree Fit