Using the techniques of beta and gamma-ray spectroscopy to study nuclear shape in exotic, neutron-rich nuclei in the A~100 region.
Outline

• Background
 • Deformation
 • Systematic review
 • Previous work

• Experimental setup
 • Penning traps
 • Post-trap spectroscopy setup
 • Ramsey cleaning technique
 • Frequency scans

• Preliminary results

• Future work
Introduction

Isomeric state \[102^\gamma \]

Ground state

\[\Delta E < 200 \text{ keV} \]

\[\Delta t_{1/2} \approx 0.06 \text{ s} \]
Introduction

Shape change at N=59

• Systematic study of yttrium isotopes

• From N=50 the nuclear deformation becomes increasingly oblate and soft. At N=60 a transition to a strongly deformed rigid prolate shape occurs.

Introduction

Low spin state produced by thermal fission of a 235U target at TRISTAN facility at Brookhaven National Lab.

High spin state produced by thermal fission of a 235U target using the JOSEF recoil separator at the research reactor DIDO at Kernforschungsanlage Jülich, without the use of an ion source.

Gamma-ray energy (keV)

<table>
<thead>
<tr>
<th>Low spin state</th>
<th>High spin state</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>100(4)</td>
</tr>
<tr>
<td>160</td>
<td><1.1</td>
</tr>
<tr>
<td>327</td>
<td>8.6(9)</td>
</tr>
<tr>
<td>579</td>
<td><1.1</td>
</tr>
<tr>
<td>1059</td>
<td>29(3)</td>
</tr>
<tr>
<td>1091</td>
<td><1.3</td>
</tr>
</tbody>
</table>

Introduction

Introduction
Introduction

14 µA proton beam
130 MeV

Uranium target

Experimental Setup

Separated by mass

Spectroscopic line

Trap line

Experimental Setup

Experimental Setup

Tape station – moves about every 60 s

Beam direction
Experimental Setup

Magnetron motion: Mass independent
Cyclotron motion: Mass dependent

Experimental Setup

Primary beam: 14μA $\approx 9 \times 10^{13}$ protons/s

102Y after traps: ~ 1 ion/s
Primary beam: $14 \, \mu A \approx 9 \times 10^{13}$ protons/s

102Y after traps: ~ 1 ion/s
Preliminary Results

University of Brighton

Counts vs. E_γ (KeV)

- 152 keV
- 327 keV
- 579 keV
- 618 keV
- 1054075 Hz

Counts vs. (Dipole frequency - 1054000) [Hz]

- 1060 keV
- 1090 keV
- 1211 keV

Counts

- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70

Counts

- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
Preliminary Results

327 keV / 152 keV

1060 keV / 152 keV

579 keV / 152 keV

1090 keV / 152 keV
Preliminary Results

618 keV origin?

- Not seen in previous experiments
- Not from background
• 102Y was produced, and Ramsey cleaning was applied

• The two states were not clearly separated

• Hope to obtain more experimental data

• It would also be interesting to identify the origin of the 618 keV peak

• In the future we would also like to do some model calculations to further understand this region
Questions?

C.R. Nobs1, A.M. Bruce1, T. Eronen2, V.S. Kolhinen2, A. Kankainen2, P. Campbell2,3, J. Hakala2, A. Jokinen2, S. Kelly3, J. Koponen2, I.D. Moore2, H. Penttilä2, I. Pohjalainen2, J. Reinikainen2, S. Rinta-Antila2, V. Simutkin2

1School of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ, UK
2Department of Physics, University of Jyvaskyla, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland
3Schuster Laboratory, University of Manchester, Manchester, M13 9PL, UK
From Spins to Shapes
From Spins to Shapes

More information is needed!
Ramsey Cleaning

Excitation pattern:

10ms ON
80ms OFF
10 ms ON

Provides much better mass resolution.

$^{54}\text{Co}^+$ (0$^+$ g.s.)
$T_{1/2} = 193\ ms$

$^{54m}\text{Co}^+$ (isomer)
$T_{1/2} = 1.48\ min$