The Search for Shape Coexistence in 179Au

by

Faye Wearing
• Nuclei exhibits different shapes within small energy range.
• Shell gap = stabilising
• Residual interactions between nucleons = increase in correlation energy

A.N. Andreyev et. al Letters to Nature 186Pb
- 179Au has odd number of protons
- Proton coupled to 178Pt core
- Hole coupled to 180Hg core
Experimental Set-up

- Germanium array at target position
- Coupled with SAGE spectrometer
- RITU gas filled separator
- GREAT spectrometer at focal plane.

P. Papadakis Thesis
SAGE Spectrometer

Silicon Detector

Target Position

High Voltage Barrier

Carbon Foil

P. Papadakis Thesis
Experimental details

• $^{82}\text{Kr} + ^{100}\text{Ru} \rightarrow ^{182}\text{Hg}$

• Fusion evaporation reaction

• 3 particle exit channel (p2n)
Gamma ray spectra

- Spectrum gated on 153 keV
- Recoil gated
Level scheme

- Some rearrangement at low spin
Systematics

![Graph showing excitation energy vs neutron number N for different isotopes of Au. The graph highlights energy levels for specific states such as $25/2^+$, $21/2^+$, $17/2^+$, and $13/2^+$.]
Using SAGE: electron – gamma coincidences

Recoil tagged spectrum, gated on 262 keV gamma ray.
Using BRICC calculator:
138 keV electron is K electron associated with 220 keV transition.
Using SAGE:

Recoil tagged spectrum, gated on 262 keV gamma ray.

![Graph showing counts versus energy with a peak at 269 keV]
Using BRICC calculator: 269 keV electron is K electron associated with 350 keV transition.
Summary

• This work has produced a 179Au level scheme in agreement with literature.
• Demonstrated validity of electron-gamma coincidences.
• Future work will include analysing and understanding electron spectra
 - E0 transitions
 - Conversion coefficients
 - Fine structure

Thank You
Collaborators

1. University of Liverpool

2. Slovak Academy of Sciences

3. University of Jyvaskyla

4. University of Surrey

5. University of York

1. University of Manchester

D.T Joss¹, M. Venhart², F. Ali¹, K. Auranen³, M. Baloghová², R.J. Carroll⁴, D. Cox¹, J. Cubiss⁵, T.R. Davis-Merry¹, M.C. Drummond¹, T. Grahn³, A. Gredley¹, P. Greenlees³, J. Henderson⁵, A. Herzan³, U. Jakobsson³, R. Julin³, S. Jutinen³, J. Konki³, M. Leino³, V. Matoušek², C.G. McPeake¹, A.K. Mistry¹, J. Pakarinen³, P. Papadakis³, J. Partanen³, P. Peura³, P. Rahkila³, P. Ruotsalainen³, M. Sandzelius³, J. Sarén³, C. Scholey³, M. Sedláčk², J. Sorri³, M. Statelov², S. Stolze³, J. Strišovská², M.J. Taylor⁶, A.M. Thornthwaite¹, J. Uusitalo³, A. Ward¹.