MEASUREMENT OF YRAST 6+ ISOMERS IN $^{136,138}\text{Sn}$

J. Keatings
University of the West of Scotland
Contents

• Motivations
 o Shell structure
 o Astrophysical r-process
• Experimental Set-up
 o BigRIPS & ZDS
 o WAS3ABI
 o EURICA
• Results
• Shell-model calculations
 o Comparison to Ni
• Summary
Motivations

• Sn nuclei very interesting – testing neutron-neutron part of effective interaction (with respect to 132Sn core).

• Measure nuclear structure in a very-neutron rich region and observe evolution of shells.

• Study of r-process nuclei.

• Aim to obtain reliable shell-model predictions – useful for predictions of nuclear properties relevant to r-process (masses, β decay rates, excited-state energies).
12 and 14 neutrons from last stable Sn nucleus. Just beyond N=82 shell gap.

No excited states known in 136,138Sn.
Variation between energy predictions of rescaled, empirical, and realistic shell-model calculations.
Astrophysical r-process

Occurs after core collapse of type-II supernovae.

High neutron flux

Produces $\sim 1/2$ of matter in the universe heavier than Fe.
Brett et al. tested 3 global mass-model predictions and altered parameters to see each nucleus’ influence on the abundances.

“The nuclei with greatest impact on the r-process - neutron-rich isotopes of cadmium, indium, tin, and antimony in the N = 82 region...”

<table>
<thead>
<tr>
<th></th>
<th>FRDM</th>
<th>DZ</th>
<th>HFB-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>138Sn</td>
<td>24.59</td>
<td>132Cd</td>
<td>36.54</td>
</tr>
<tr>
<td>132Cd</td>
<td>22.37</td>
<td>138Sn</td>
<td>26.74</td>
</tr>
<tr>
<td>130Sn</td>
<td>19.64</td>
<td>134Cd</td>
<td>25.96</td>
</tr>
<tr>
<td>137Sn</td>
<td>18.06</td>
<td>137Sn</td>
<td>23.23</td>
</tr>
<tr>
<td>137Sb</td>
<td>13.69</td>
<td>140Sn</td>
<td>21.79</td>
</tr>
<tr>
<td>140Sn</td>
<td>11.12</td>
<td>86Zn</td>
<td>21.15</td>
</tr>
<tr>
<td>86Zn</td>
<td>10.24</td>
<td>139Sn</td>
<td>17.25</td>
</tr>
</tbody>
</table>

BigRIPS & ZeroDegree spectrometer

345-MeV/u 238U beam (provided by RRC, fRC, IRC, SRC) illuminating Be target.

SRC has K value of 2500-MeV.

Measures ΔE, ToF and B_ρ on an event-by-event basis to determine Z and m/q.

Utilises position sensitive PPACs, plastic scintillation counters & MUSIC.
To apply gate on specific nuclei define an acceptable region of Z and A/Q.

![Diagram showing Z vs AoQ with specific nuclei ^{135}Sn, ^{136}Sn, ^{137}Sn, and ^{138}Sn highlighted.]}
Wide Angle Silicon-Strip Stopper Array for β and Ion detection

- 8 layered position sensitive DSSSD
- Highly segmented (60x40)
- 14400 1-mm2 pixels

Ions implanted into WAS3ABI after leaving ZDS.

~60 ions/s implanted.
Euroball-RIKEN Cluster Array

12 HPGe detectors, each with 7 crystals.

Placed around WAS3ABI in close geometry.

Placed around WAS3ABI in close geometry.
Results

136Sn transitions were measured to be in coincidence with all other transitions.

138Sn transitions did not have enough statistics for γ-γ correlation.

Flight time through BigRIPS \sim640-ns

\sim10 half-lives of the 136Sn decay

\sim0.1% of 136Sn nuclei reach WAS3ABI in excited state.

Calculations predict the energies of the levels well.

Comparison

CD-Bonn free n-n potential potential, renormalized by $V_{\text{low-k}}$ method. Neutron charge = 0.65e.

Calculations predict the energies of the levels well.

Treating nuclei as purely $\nu = 2$ excitations origination from $f^2_7 \frac{Z}{2}$ gives good predictions of energies.
Tuning shell model interactions

B(E2, 6^+→4^+) in ^{136}\text{Sn} are not properly reproduced by shell model.

Correct B(E2) by reducing \(f_7^2\) pairing by \(~150\text{-keV.}\)

Incorrect prediction of transition rates shows that the structure of the 4^+ states of ^{136}\text{Sn} is not as simple as purely caused by \(\nu = 2.\)
Comparison to Ni isomer predictions

Analogous situation in very neutron-rich Ni.

Shell model predicts \(\sim \mu s \) isomer in \({\text{72}\text{Ni}}\), but has not been observed experimentally.

Same effect in two heavy regions neutron-rich in nuclear chart.

H. Grawe, Nuclear Physics A704 (2002)
Summary

- 3 delayed γ rays from 136,138Sn have been observed from decays of (6+) seniority isomeric states.

- Low energy structure of Sn shown not just $\nu = 2$ excitations.

- These states were used to tune $B(E2, 6^+ \rightarrow 4^+)$ calculations in an extremely neutron rich region of the nuclear chart.
Acknowledgements

G. Gey, G. Simpson, A. Jungclaus, J. Taprogge and S. Nishimura & K. Sieja

BigRIPS team and EURICA collaboration.

Thank you for listening!