Data acquisition and timing performance of the fast timing array for NUSTAR

IOP conference 2015

Matthias Rudigier

UNIVERSITY OF SURREY

30. March 2014
Data acquisition and timing performance of the fast timing array for NUSTAR

1. Introduction
2. Fast timing array for DESPEC
3. The data acquisition system
4. First test results
5. Outlook
Introduction

Detectors with LaBr$_3$(Ce) crystals
- Good time and energy resolution
- Good efficiency
- $\gamma\gamma$ fast timing feasible
- Measure exotic nuclei
- Fast timing array for FAIR

Time spectra:
- Prompt response
- with lifetime

\[\log(N) \quad t \quad P(t) \]
\[\log(N) \quad t \quad D(t) \]
DESPEC Layout
The detectors

- LaBr$_3$(Ce) from Saint-Gobain
- 2 x 1.5 in cylindrical
- H10570 PMTs
- Lead shield to suppress cross talk
- Timing and energy output
- 36 detectors in Surrey
The frame

at the University of Surrey

- Built in Daresbury
- 36 mounting positions
- three rings: one ring at 6° and two at ±44°
VME based data acquisition

- CAEN modules
- V1728 controller (optical link to A3818)
- Energy: V1751-DPP digitizers, 1GS/s (4x8ch)
- Timing: V812 CFD and V1290A TDC (32 ch)
- no common operation of V1290 and V1751 yet
V1751 digitizer with DPP firmware

\[152\text{Eu source}\]

\[\text{401 keV and 444 keV well separated}\]

\[60\text{Co source}\]

Energy resolution:
- 19% at 121 keV
- 8% at 344 keV
- 4% at 779 keV
- 3% at \[60\text{Co lines}\]

PMTs operated at 1250 V
V812 CFD and V1290A TDC

First result

- 24 ps/chn time resolution (matches 25 ps LSB)
- Prompt from ^{60}Co source
- CFD delay 8 ns
- No correlation with V1751 yet
- “Gated” with CFD threshold
- Comparable to earlier test with analog electronics (FWHM 291 ps)

Graph:

- ^{60}Co source
- 1173 keV, 1333 keV prompt coinc.
- FWHM 275 ps

Counts vs. Δt (ns)
Timing with the V1751 digitizer

- get timing directly from digitizer
- implement time pick-off algorithm
- tests with wave forms from V1751 promising (NPL)
- CAEN announced timing firmware for V1751
- simplify the system
- has to be tested
Future integrations

Layout for array at GANIL

2015/2016
Proposals accepted at

- GANIL with AGATA and VAMOS
 \((2^+_1 \text{ half life of } ^{190,192}\text{W}, \text{P.R. John et al.}) \)
- Argonne with Gammasphere 32 LaBr detectors
 \((^{252}\text{Cf source, S. Lalkovski et al.}) \)
Frame for FAIR ready
36 detectors ready at Univ. of Surrey
Work on DAQ in progress
Experiments using the system late 2015/early 2016
Prospect for fast timing with V1751 alone
Thank you

Stefan Lalkovski1, Zsolt Podolyak1, Patrick Regan1, Allison Bruce2, Cristina Roxana Nita2, 3, Ian Lazarus4, Vic Pucknell4

1University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom

2School of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ, United Kingdom

3Horia Hulubei National Institute in Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania

4CLRC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom

and all others from the

Fast timing for DESPEC Collaboration