Charge Collection Efficiency of micro-strip Silicon Sensors designed for studying Charge Multiplication after Hadron irradiation

Sven Wonsak1, T. Barber2, C. Betancourt2, G. Casse1, P. Dervan1, D. Forshaw1, M. Hauser2, K. Jakobs2, P. Kodys3, S. Kuehn2, R. Mori2, U. Parzefall2, P. Sommer2, M. Thomas2

1University of Liverpool (UK), 2Albert-Ludwigs Universität Freiburg (D), 3Charles University (CZ)
Motivation

• For HL-LHC upgrade 2022 expect fluence for the silicon strip sensors at most $\approx 2 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$
• Sensors not fully depleted at these fluences below 1000V => less signal
• Charge multiplication is a beneficial effect to increase the signal
 – Multiplication due to impact ionisation in regions with high electric field (10-15 V/μm): close to the strip implants
 – but also increase noise and reduce breakdown voltage
• Create sensors to benefit from charge multiplication
Dedicated charge multiplication sensors, produced by Micron Semiconductor Ltd (UK)
 - Detectors aim to enhance the electric field near the readout strips

1cm x 1cm, n-in-p FZ strip detectors

Various strip pitch (P) and width (W)

Some sensors with floating (F) or biased (I) intermediate strips between readout strips

Sensors irradiated with neutrons (Ljubljana) to 1×10^{15} and 5×10^{15} n_{eq}/cm^2

<table>
<thead>
<tr>
<th>Serial No</th>
<th>Thickness [μm]</th>
<th>Resistivity [kΩ/cm]</th>
<th>Implant Details</th>
<th>Labelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>2935-(2,4,5,6,7,8,9)</td>
<td>305</td>
<td>13</td>
<td>Standard</td>
<td>std</td>
</tr>
<tr>
<td>2912-(2,3)</td>
<td>300</td>
<td>10-13</td>
<td>Standard, double implant energy</td>
<td>2E imp</td>
</tr>
<tr>
<td>2935-10</td>
<td>305</td>
<td>13</td>
<td>Standard, double diffusion time</td>
<td>extra diff</td>
</tr>
<tr>
<td>2885-5</td>
<td>150</td>
<td>10</td>
<td>Thin</td>
<td>thin</td>
</tr>
</tbody>
</table>
Use ALiBaVa system for charge collection measurements

• Up to 2 sensors are attached to Beetle chips for analogue read-out

• High voltage connection to bias ring on daughterboard

• β Setup:
 – MIP’s from ^{90}Sr source
 – Scintillators for triggering
 – Irradiated sensors measured at temperatures between -20°C and -30°C in a freezer
Neutron Irradiation $1 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$

Collected Charge

No clear sign of charge multiplication

<table>
<thead>
<tr>
<th>Material</th>
<th>Treatment</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>P40-W15-F6</td>
<td>std, Liv</td>
<td></td>
</tr>
<tr>
<td>P40-W15-F15</td>
<td>std, FR</td>
<td></td>
</tr>
<tr>
<td>P40-W15-I15</td>
<td>std, FR</td>
<td></td>
</tr>
<tr>
<td>P40-W15-I15</td>
<td>std, Liv</td>
<td></td>
</tr>
<tr>
<td>P80-W6</td>
<td>std, FR</td>
<td></td>
</tr>
<tr>
<td>P80-W6</td>
<td>std, Liv</td>
<td></td>
</tr>
<tr>
<td>P80-W6</td>
<td>std, Liv, M2</td>
<td></td>
</tr>
<tr>
<td>P80-W25</td>
<td>std, FR</td>
<td></td>
</tr>
<tr>
<td>P80-W25-F10</td>
<td>std, FR</td>
<td></td>
</tr>
<tr>
<td>P80-W25-F35</td>
<td>std, Liv</td>
<td></td>
</tr>
<tr>
<td>P80-W25-I10</td>
<td>std, FR</td>
<td></td>
</tr>
<tr>
<td>P80-W25-I35</td>
<td>std, FR</td>
<td></td>
</tr>
<tr>
<td>P80-W25-I35</td>
<td>std, Liv</td>
<td></td>
</tr>
<tr>
<td>P80-W60</td>
<td>std, FR</td>
<td></td>
</tr>
<tr>
<td>P80-W60</td>
<td>std, Liv</td>
<td></td>
</tr>
</tbody>
</table>

01/04/2015

IOP2015, Manchester, Sven Wonsak
Neutron Irradiation $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$

Collected Charge

Blue: std
Red: 2E imp
Green: extra diff
Orange: thin

2E imp, extra diff more charge than std

Collected Charge [ke]
Voltage [V]
Neutron Irradiation $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$

Blue: std
Red: 2E imp
Green: extra diff
Orange: thin
Width/Pitch for $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$

- Charge multiplication only observed at $V_{\text{bias}} > 600\text{V}$
- Extra diff and 2E imp show charge multiplication with respect to standard wafer
- Lower W/P ratio leads to more pronounced multiplication (as expected since fields are larger at strip edges)
Detectors with biased intermediate strips (I) show a clear deficit of charge compared to sensors with no intermediate strips or floating intermediate strips (F).

- Neutron 5×10^{15} n_{eq}/cm^2
- Proton 1×10^{15} n_{eq}/cm^2
• Room temperature (20°C) annealing in nitrogen cabinet
 – P80-W25-I35, std, Liv; $1 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$
 – P80-W25-I35, std, Liv; $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$

• Long term bias test
 – Apply high voltage for long period of time
 – Choose $U > 1000\text{V}$ because at this voltage more collected charge
 – P80-W25-I35, std, Liv; $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$
P80-W25-I35, 1×10^{15} n_{eq}/cm^2

Collected Charge

Expected annealing curve

Collected charge [ke]

Annealing Time [d]

0.0 100 200 300 400 500 600 700

0 10 20 30 40 50 60 70

300 V

400 V

500 V

600 V

700 V

800 V

900 V

1000 V

1100 V

1200 V

1400 V

01/04/2015

IOP2015, Manchester, Sven Wonsak
Collected Charge

Collected charge [ke]

Annealing Time [d]

- 600 V
- 800 V
- 1000 V
- 1200 V
- 1400 V
- 1600 V
- 1800 V
- 2000 V

P80-W25-I35, $5 \times 10^{15} \text{n_{eq}/cm}^2$

01/04/2015

IOP2015, Manchester, Sven Wonsak
P80-W25-I35, $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$

SNR

Annealing Time [d]

Variations of SNR for different voltages (600 V to 2000 V) over time.
Long-term bias test
During measurement sensor reached compliance (red line) => ramp to 0V, no bias for 1d, then back to 1700V

1700V
Summary/Conclusion

• No evidence for charge multiplication can be seen for an irradiation fluence of $1 \times 10^{15} \text{n}_{eq}/\text{cm}^2$

• $5 \times 10^{15} \text{n}_{eq}/\text{cm}^2$: ‘double implant energy’ and ‘extra diffusion time’ show higher collected charge than ‘standard’ sensors
 – Low width/pitch ratio leads to pronounced multiplication
 – Intermediate strips have no benefits in terms of collected charge

• Long term annealing of $5 \times 10^{15} \text{n}_{eq}/\text{cm}^2$ sensor show increased collected charge for voltages $>1000\text{V}$
 – Annealing of second set of sensors show same behaviour

• Long term bias test show decrease of enhanced signal
 – Under investigation in collaboration with Freiburg group
• Irradiations supported by the Initiative and Networking Fund of the Helmholtz Association, contract HA-101 ("Physics at the Terascale")
• The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025
• We would like to thank the irradiation teams at Ljubljana and Karlsruhe

By Nathan Readioff

Please support this project: https://ideas.lego.com/projects/94885
Neutron Irradiation $1 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$

Noise

01/04/2015
IOP2015, Manchester, Sven Wonsak
SNR

Voltage [V]

Neutron Irradiation $1 \times 10^{15} \text{n}_{eq} / \text{cm}^2$

01/04/2015

IOP2015, Manchester, Sven Wonsak
Neutron Irradiation $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$