Measuring open charm hadron production in proton-proton collisions at $\sqrt{s} = 13$ TeV with the LHCb detector

Christopher Burr on behalf of the LHCb collaboration
Annual IoP HEPP Meeting, 1st April 2015
Aims

- Aim to measure absolute cross-section of $\sigma (pp \rightarrow c\bar{c})$ at $\sqrt{s} = 13$ TeV using data from LHC Run II
- Measure differential production cross-sections of charm hadrons* in bins of p_T and rapidity
- Previously measured at LHCb with $\sqrt{s} = 7$ TeV using 2010 data†
- Possibility to apply analysis to 2012 data to get a $\sqrt{s} = 8$ TeV measurement
- Will present the motivation, methodology and current progress

D0, D$, D^+_s$, $D^(2010)^+$, Λ^+_c, $D^*(2007)^0$, D^{*+}_s, Σ^+_c, Σ^{++}_c, Ξ^+_c and Ξ^{++}_c

The LHCb detector
The LHCb detector

- Acceptance between 2 and 5 in pseudorapidity
The LHCb detector

- Acceptance between 2 and 5 in pseudorapidity
- Excellent primary vertex resolution
 - 13 µm in X/Y direction
 - 71 µm in Z direction
- Excellent momentum resolution
 - 0.5 %@5 GeV
 - 0.8 %@100 GeV
The LHCb detector

- Acceptance between 2 and 5 in pseudorapidity
- Excellent primary vertex resolution
 - 13 µm in X/Y direction
 - 71 µm in Z direction
- Excellent momentum resolution
 - 0.5 %@5 GeV
 - 0.8 %@100 GeV
- Good particle identification
 - $\epsilon_{\text{PID}}(K) \approx 95\%$ with MisID($\pi \rightarrow K$) $\approx 5\%$
 - $\epsilon_{\text{PID}}(\mu) \approx 97\%$ with MisID($\pi \rightarrow \mu$) $\approx 1\text{--}3\%$
Motivations
Comparisons with theoretical models

- Theoretical models are available such as FONLL\(^\dagger\) and GMVFNS\(^\S\)
- Excellent test of QCD dynamics - especially at high rapidity

\[^\S\]Kniehl, B. A. et al. The European Physical Journal C July 2012, 72, 2082.
Neutrino experiments

- Cosmic rays collide with atmospheric nuclei producing charm hadrons
- Decays result is a significant background for neutrino experiments
- Accurately knowing $\sigma (pp \rightarrow c\bar{c})$ is required to quantify this
- 7 TeV at the LHC is equivalent to 26 PeV with a fixed target

** http://cern.ch/go/l86H.
• The PROSA Collaboration†† have preliminary results using LHCb Run 1 results to fit PDFs
• Using the charm and beauty cross-section measurements
• Results in significant improvements in precision

††PROSA 14-001 Impact of the LHCb measurements of forward charm and beauty production on PDFs
Measurement Strategy
How do we calculate the cross-section?

- Measure yield of a decay in bins of transverse momentum and rapidity
- Can then calculate the integrated cross-section in each bin:

\[\sigma_i (H_c) = \frac{N_i (H_c \rightarrow f + \text{c.c.})}{\epsilon_{i,\text{tot}} (H_c \rightarrow f) \cdot B (H_c \rightarrow f) \cdot L_{\text{int}}} \]

- And estimate the double differential cross-section with:

\[\frac{\partial^2 \sigma (H_c)}{\partial p_T \partial y} = \frac{\sigma_i (H_c)}{\Delta p_T \Delta y} \]

- Total \(\sigma (pp \rightarrow c\bar{c}) \) calculated by extrapolating to the full 4 \(\pi \) solid angle using Monte Carlo
- Will also measure cross-section ratios between charm hadrons
- And normalised cross-sections in \(p_T-y \) space
Data taking

· Data will be collected during the first 3 weeks of LHC Run 2
· Cross-section decreases exponentially with increasing p_T
· Therefore a split trigger strategy will be used:
 · Passthrough trigger used for, high statistics, low p_T region
 · Turbo stream** used for, low statistics, high p_T region

Data taking

- Data will be collected during the first 3 weeks of LHC Run 2
- Cross-section decreases exponentially with increasing p_T
- Therefore a split trigger strategy will be used:
 - Passthrough trigger used for, high statistics, low p_T region
 - Turbo stream‡‡ used for, low statistics, high p_T region

Selection chain

All events

- $p_T > 1000 \text{ MeV}$
- $p > 2000 \text{ MeV}$
- $\chi^2 < 3$
- $\text{IP} \chi^2 > 9$

Passthrough

Vertex quality
- Mother lifetime
- Daughter momentum
- Daughter PID

Final selection and BDT
Selection strategy

Previous 2010 measurement at $\sqrt{s} = 7 \text{ TeV}$

- Cut based selection
- Lower efficiency
- Not uniform across p_T/y space
Selection strategy

Changes for the new 2015 measurement at $\sqrt{s} = 13$ TeV

- Loose cut based preselection
- Main selection performed using a BDT
- Single PID cut used per species
Yield extraction

- Yields are extracted by performing a 2D fit in mass and IP χ^2
- Mass fit is used to evaluate combinatoric background
- IP χ^2 fit is used to quantify secondary signal
Yield extraction

- Yields are extracted by performing a 2D fit in mass and IP χ^2.
- Mass fit is used to evaluate combinatoric background.
- IP χ^2 fit is used to quantify secondary signal.
- For modes with a soft pion a 3D fit is used, additionally fitting the delta mass of the mother i.e. $\delta m(D^{*+}) = m(D^{*+}) - m(D^0)$.
Status and prospects

- Provisional selections are complete
- Evaluation of efficiencies is on going
- Yield extraction is complete
- Need to develop strategies for evaluating systematic uncertainties
- Can cross-check the new analysis strategy with the 2010 result using $\sqrt{s} = 7$ TeV data taken in 2011
Backup
<table>
<thead>
<tr>
<th>H_c</th>
<th>Modes</th>
<th>H_c</th>
<th>Mode</th>
</tr>
</thead>
</table>
| D^0 | $K^− \pi^+$
 | $K^− \pi^+ \pi^− \pi^+$ | D^{*+} | $D^0 \rightarrow K^− \pi^+ \pi^− \pi^+$ |
| D^+ | $K^− \pi^+ \pi^+$
 | $\phi \rightarrow K^− K^+$ π^+ | D^{*0} | $D^0 \rightarrow K^− \pi^+ \pi^0$
 | $D^0 \rightarrow K^− \pi^+ \pi^− \pi^+$ π^0 |
| D^+_s | $\phi \rightarrow K^− K^+$ π^+
 | $\pi^+ \pi^− \pi^+$ | D^{*+}_s | $D^{+_s} \rightarrow \phi \rightarrow K^− K^+$ π^+ γ
 | $D^{+_s} \rightarrow \pi^+ \pi^− \pi^+ \gamma$ |
| $Λ^+_c$ | $pK^− \pi^+$
 | $pK^− K^+$ or $p\pi^− \pi^+$ | $Σ^+_c$ | $Λ^+_c \pi^−$
 | $Σ^+_c$ | $Λ^+_c \pi^+$ |
| $Ξ^+_c$ | $pK^− \pi^+$ | $Ξ^+_c$ | $pK^− K^− \pi^+$ |