Investigation of low-lying collective excitations in Mo-96

30.03.2014

E.T. Gregor
Contents

• Background
 – Isovector (Mixed-symmetry) states
 – Why Mo-96?
 – Transition strengths
 – Neutron capture

• Experiment
 – Determining multipolarity

• (Very) Preliminary results
 – Direct decay of the 3^{-}_1-state
 – The 2^{+}_{ms}-state
 – Decay of the candidate
 – J^π of the neutron capture state

• Summary

• Outlook
Background
Isovector states

Without interaction

\[
\begin{pmatrix}
H_0 & 0 \\
0 & H_0
\end{pmatrix}
\begin{pmatrix}
\Psi_1 \\
\Psi_2
\end{pmatrix} = E_i
\begin{pmatrix}
\Psi_1 \\
\Psi_2
\end{pmatrix}
\]

Adapted from K. Heyde, J. Sau, PRC 33, 1050 (1986)
Background
Isovector states

\[
\begin{pmatrix}
H_0 & 0 \\
0 & H_0
\end{pmatrix}
\begin{pmatrix}
\Psi_1 \\
\Psi_2
\end{pmatrix} = E_i
\begin{pmatrix}
\Psi_1 \\
\Psi_2
\end{pmatrix}
\]

Without interaction

\[
\begin{pmatrix}
H_0 & V_{12} \\
V_{12} & H_0
\end{pmatrix}
\begin{pmatrix}
\Psi_1 \\
\Psi_2
\end{pmatrix} = E_i'
\begin{pmatrix}
\Psi_1 \\
\Psi_2
\end{pmatrix}
\]

With interaction

\[
\beta |\Psi_1\rangle - \alpha |\Psi_2\rangle = \beta |\Psi_1\rangle + e^{i\pi} \alpha |\Psi_2\rangle
\]

Adjusted from K. Heyde, J. Sau, PRC 33, 1050 (1986)
Background
Isovector states

M. Scheck et al., PRC 81, 064305 (2010)
Background
Isovector states

M. Scheck et al., PRC 81, 064305 (2010)

M. Scheck et al., PRC 81, 064305 (2010)
Background
Why 96-Mo?

\[\begin{align*}
3s_{1/2}^+ & \quad \text{---------------------} \\
2d_{3/2}^+ & \quad \text{---------------------} \\
1h_{11/2}^- & \quad \text{---------------------} \\
1g_{7/2}^+ & \quad \text{---------------------} \\
\end{align*} \]

\[E_F - - - \quad \frac{2d_{5/2}^+}{\nu} \quad - - - \quad \frac{1g_{9/2}^+}{\pi} \quad 2p_{1/2}^- \]

\[\quad \frac{1f_{5/2}^-}{\pi} \quad 2p_{3/2}^- \]
Background
Why 96-Mo?

\[\Psi_{\pi}^{3-} = \alpha \left[g_{9/2}^{+}, p_{3/2}^{-} \right]_{3-} + \beta \left[g_{9/2}^{+}, f_{5/2}^{-} \right]_{3-} \]

\[\Psi_{\nu}^{3-} = \alpha \left[h_{11/2}^{-}, d_{5/2}^{+} \right]_{3-} + \beta \left[h_{11/2}^{-}, g_{7/2}^{+} \right]_{3-} \]
Background
Why 96-Mo?

- First and second 3^--state in 96Mo at 2234 and 3178 keV respectively
- Proton and neutron 3^--states in-between
- Publication in preparation!

Data from BNL’s ENSDF

30.03.2015 E.T. Gregor
Background

Transition strengths

\[B \left(\frac{M}{E}, \lambda, J_i \rightarrow J_f \right) = (2J + 1)^{-1} |\langle \Psi_f || \left(\frac{M}{E} \lambda \right) || \Psi_i \rangle|^2 \]

\[B (M1) = C_{M1} \frac{I_{rel} [\%/100]}{\tau \left(E_{\gamma} [MeV] \right)^{(2L+1)}} \frac{1}{1 + \delta^2} \]

\[B (E2) = C_{E2} \frac{I_{rel} [\%/100]}{\tau \left(E_{\gamma} [MeV] \right)^{(2L+1)} \delta^2} \frac{1}{1 + \delta^2} \]
Background

Transition strengths

\[B \left(\frac{M}{E} \lambda, J_i \rightarrow J_f \right) = (2J + 1)^{-1} |\langle \Psi_f | \left(\frac{M}{E} \lambda \right) | \Psi_i \rangle|^2 \]

\[B (M1) = C_{M1} \frac{I_{rel} [%/100]}{\tau (E_{\gamma} [MeV])^{(2L+1)} 1 + \delta^2} \]

\[B (E2) = C_{E2} \frac{I_{rel} [%/100]}{\tau (E_{\gamma} [MeV])^{(2L+1)} 1 + \delta^2} \]

Follow-up experiment? (GAMS)

Gamma-spectroscopy

Multipole and mixing ratio from angular correlation (see there)
Background
Neutron capture

\[J_{\text{even,capture}}^\pi = J_{\text{odd,ground}}^\pi \pm 1/2 \]

Meaning for \(^{95/96}\text{Mo}\\):

\[\frac{5}{2}^+ \pm \frac{1}{2} = 2^+, 3^+ \]

\[E_{\text{NCS}} = 9154.32 \text{ keV} \]
Experiment

• Neutrons from ILL’s high flux reactor
• Neutron capture on 95Mo
• Thermal neutron flux of 10^8 n/cm²
• Decays measured with EXOGAM
 • 8 Ge-clover detectors with BGO suppression shields
• Measured for approx. two nights (~20h)

ILL Réacteur à haut flux – Rapport transaprence et sécurité nucléaire
EXOGAM homepage

30.03.2015
E.T. Gregor

13
Experiment
Determining multipolarity

O. Kaleja, BSc thesis
• In a cascade of two decays, the angular distribution of the second ray is measured relative to the first
In a cascade of two decays, the angular distribution of the second ray is measured relative to the first.

The angular distributed is fitted to the following formula...

\[W(\theta) = a_0 + a_2 P_2(\cos\theta) + a_4 P_4(\cos\theta) \]

K. Krane, Introductory Nuclear Physics
In a cascade of two decays, the angular distribution of the second ray is measured relative to the first.

The angular distribution is fitted to the following formula...

$$W(\theta) = a_0 + a_2 P_2(\cos\theta) + a_4 P_4(\cos\theta)$$

..obtaining the coefficients a_2 and a_4

$$a_n = B_n(L_1, L'_1, \delta_1, j_1, j) \cdot A_n(L_2, L'_2, \delta_2, j_2, j)$$

J. Beller, PhD thesis
In a cascade of two decays, the angular distribution of the second ray is measured relative to the first. The angular distribution is fitted to the following formula:

\[W(\theta) = a_0 + a_2 P_2(\cos\theta) + a_4 P_4(\cos\theta) \]

obtaining the coefficients \(a_2\) and \(a_4\)

\[a_n = B_n(L_1, L'_1, \delta_1, j_1, j) \cdot A_n(L_2, L'_2, \delta_2, j_2, j) \]

From which multipolarity and multipole mixing factors can be obtained.
(Very) Preliminary Results
Direct decay of the first 3^--state
(Very) Preliminary Results

Direct decay of the first 3^--state
(Very) Preliminary Results
Direct decay of the first 3^{-}-state
(Very) Preliminary Results

The 2^{+}_{ms}-state
(Very) Preliminary Results
The 2^+_{ms}-state

30.03.2015
E.T. Gregor

30.03.2015
(Very) Preliminary Results

The 2^+_{ms}-state

30.03.2015

E.T. Gregor
(Very) Preliminary Results

Decay of the candidate

30.03.2015

E.T. Gregor
(Very) Preliminary Results
Decay of the candidate
(Very) Preliminary Results

Decay of the candidate
(Very) Preliminary Results

J^π of the neutron capture state

Crate: 0, Adc: 0

No obvious direct decays from the neutron capture state to any $J=1$ state, but several decays to $J=2, 3, 4$ states

\rightarrow Neutron capture state probably has $J=3$
• Mixed-symmetric states provide a probe for proton-neutron interaction
• Mixed-symmetric states provide a probe for proton-neutron interaction
• The second 3^--state in 96Mo is a candidate
• Mixed-symmetric states provide a probe for proton-neutron interaction
• The second 3^--state in 96Mo is a candidate
• Neutron capture experiment performed
...and Outlook

30.03.2015
E.T. Gregor