Study of the intrinsic ν_e component in the T2K neutrino beam with the near detector

Sophie King

30 March 2015
The T2K experiment

Flux spectrum peaks at:

- survival min/oscillation max ($\nu_\mu \rightarrow \nu_\mu$)
 \[\rightarrow \theta_{23} \]

- oscillation max for ($\nu_\mu \rightarrow \nu_e$)
 \[\rightarrow \theta_{13} \text{ and } \delta_{CP} \]

J-PARC \rightarrow Near Detector (ND280) \rightarrow Super Kamiokande (SK)
The importance of ν_e measurements in ND280

Measure intrinsic ν_e component of the beam

ν_e are the **signal** in the search for $\nu_\mu \rightarrow \nu_e$ (\textit{ν_e from oscillation})

ν_e are also the largest **background** (\textit{intrinsic ν_e component of beam})

Measure ν_e cross-section: **Current data is scarce**

Previous T2K measurement: ν_e CC inclusive cross-section

- At the moment only ν_μ data is used to constrain systematic uncertainties at SK
- ν_e cross-section approximated to be the same as ν_μ
- ν_e data can provide a check for ν_μ flux and cross-section measurements
- Difference between ν_μ and ν_e cross-section important as sensitivities increase

Phys. Rev. Lett. 113, 241803
ND280
T2K off-axis near detector

- 280m from source
- Same off-axis angle as SK
 → oscillation effects negligible

2x Fine Grained (scintillator) Detectors (FGDs)
- active target mass, vertex reconstruction

3x Time Projection Chambers (TPCs) in an applied magnetic field
- momentum reconstruction
- charge identification
- Particle Identification (PID) using energy deposited as a function of distance (dE/dx)

Electromagnetic Calorimeters (ECals) surrounding the inner sub-detectors
- energy containment, further PID
In charged current (CC) interactions, Neutrino flavour can be determined by identifying the lepton.

Charged Current Quasi-Elastic (CCQE)

\[\nu_e + N \rightarrow e^- + N' \]

Charged Current non Quasi-Elastic (CCnonQE)

\[\nu_e + N \rightarrow e^- + N' + \text{pions} \]
Selecting ν_e CC events in ND280

- **Data quality** checks and **timing** compatibility
- Select **Highest Momentum Negative (HMN) Track** starting in FGD fiducial volume (FV)
 - Momentum > 200 MeV/c
 - Good quality track in the TPC
 - TPC Particle identification (PID) to select e^-
 - If the track enters the ECal \rightarrow perform **ECal PID** to select e^-
 - **Reject pair production** ($\gamma \rightarrow e^+ e^-$) events by looking for a positron, and cutting on the invariant mass
 - **Veto cuts** in sub-detectors reject background causing **upstream activity**.
Splitting ν_e CC events into ν_e CC 0π and ν_e CC other sub-samples

We can only detect particles which leave the nucleus
Final state interactions (FSI), e.g. a pion could be absorbed in the nucleus
→ Better to define samples according to the topology
 i.e. the particles that exit the nucleus

ν_e CC 0π
→ No pions exiting nucleus
 • No Michel electrons
 • No 'extra' tracks
 • No 'extra' ECal activity

ν_e CC other
→ Any ν_e CC that is not CC 0π
 • One or more of the following:
 Michel electron
 1+ extra tracks

'Extra' track – any track that starts in the FGD and is not the selected track
Selection improvements

'Extra' tracks

- ν_e CC 0π
- No Michel electrons
- No 'extra' tracks
- No 'extra' ECal activity

Cut designed with this situation in mind:
- Lepton ejected

Sometimes the proton is ejected into the TPC and the track is reconstructed (improved reconstruction capabilities)

New approach to the 'extra' track

In the case of only one extra FGD-TPC track
→ perform some PID
→ pass only if the track is proton-like

Resulting improvement (run2):

- CC 0π purity: $50.6\% \rightarrow 51.4\%$
- CC 0π efficiency: $28.4\% \rightarrow 35.1\%$

NOTE: T2K work in progress
Final selections (FGD1 + FGD2)

Run1, run2, run3, run4 → ~6x10^{20} POT

ν_e CC 0\pi

Purity: 48.8%

Efficiency: 36.7%

ν_e CC other

Purity: 45.9%

Efficiency: 26.4%

'\gamma' background' → Parent is a photon, and selected track is e+ or e-

'\mu' background' → Selected track is a muon
Planned cross-section measurement: ν_e CC 0π

Previous T2K measurement:
ν_e CC inclusive (ν_e CC $0\pi + \nu_e$ CC other) on carbon

Planned measurement:
ν_e CC 0π on carbon (FGD1)

- **Increased statistics** from two most recent T2K runs
 - allows a measurement on the more constrained sub-sample
- ν_e CC 0π better for **kinematic reconstruction**
Planned cross-section measurement: ν_e CC 0π

Background

Biggest background comes from pair production
- photon converts into e^+e^- pair in the FGD
- largely from NC π^0 interactions … π^0 production has large uncertainties

→ 'gamma selection' selects pair production events with a purity ~ 99
→ can use this to **constrain the background**
Summary

Motivation

- ν_e cross-section data is scarce
- Intrinsic ν_e is the biggest background in $\nu_\mu \rightarrow \nu_e$ oscillation

ND280

- constrain flux and cross-section parameters for SK measurement
- perform ν_e cross-section measurement in energy region of interest for long-baseline neutrino oscillation experiments

Implementation / progress

- ν_e CC selection in ND280 is performing well
- Cross-section measurement plans are under way
Thanks for listening
Major neutrino-producing decay modes in the decay volume:

For a neutrino beam

\[\pi^+ \rightarrow \mu^+ + \nu_\mu \]

\[K^+ \rightarrow \mu^+ + \nu_\mu \]

\[K^+ \rightarrow \pi^0 + \mu^+ + \nu_\mu \]

\[K^+ \rightarrow \pi^0 + e^+ + \nu_e \]

\[\mu^+ \rightarrow e^+ + \nu_e + \nu_\mu \]
Signal definitions

ν_e CC 0π
- in FV
- parent is ν_e or $\bar{\nu}_e$
- ν_e CC interaction
- none of the following particles
 π^0, π^-, π^+, η, ρ^0, K^0, K^+, K^-

ν_e CC other
- in FV
- parent is ν_e or $\bar{\nu}_e$
- nuCC interaction
- NOT ν_e CC 0π
PID Paths

Only use Ecal PID if track exits TPC with momentum >300 MeV/c

Energy < 1 GeV → MIP EM
Energy > 1 GeV → EM Energy
Gamma tracker analysis

Cuts

-------- List of cuts for branch 0: #cuts = 9 --------
0: event_quality --> event quality
1: himom --> Highest Momentum Track Momentum cut
2: secondary --> Secondary Track
3: quality --> # TPC nodes
4: distance.closer --> Pair Distance Cut
5: Minv.closer --> Invariant Mass Cut
6: PID --> Electron PID
7: veto_p0d --> P0D Veto
8: veto_ecal --> ECal Veto

-------- List of cuts for branch 1: #cuts = 7 --------
0: event_quality --> event quality
1: himom --> Highest Momentum Track Momentum cut
2: secondary --> Secondary Track
3: quality --> # TPC nodes
4: distance.closer --> Pair Distance Cut
5: Minv.closer --> Invariant Mass Cut
6: PID --> Electron PID